scholarly journals Generalized BSDE driven by a Lévy process

2006 ◽  
Vol 2006 ◽  
pp. 1-25 ◽  
Author(s):  
Mohamed El Otmani

We study the solution of one-dimensional generalized backward stochastic differential equation driven by Teugels martingales and an independent Brownian motion. We prove existence and uniqueness of the solution when the coefficient verifies some conditions of Lipschitz. If the coefficient is left continuous, increasing, and bounded, we prove the existence of a solution.

2018 ◽  
Vol 26 (3) ◽  
pp. 143-161
Author(s):  
Ahmadou Bamba Sow ◽  
Bassirou Kor Diouf

Abstract In this paper, we deal with an anticipated backward stochastic differential equation driven by a fractional Brownian motion with Hurst parameter {H\in(1/2,1)} . We essentially establish existence and uniqueness of a solution in the case of stochastic Lipschitz coefficients and prove a comparison theorem in a specific case.


2017 ◽  
Vol 0 (0) ◽  
Author(s):  
Abou Sene ◽  
Aboubakary Diakhaby

AbstractIn this paper, we consider a class of one-dimensional reflected Backward Stochastic Differential Equation (BSDE for short) when the noise is driven by a Brownian motion and an independent Poisson point process. Using a stochastic variational inequality, we characterize its solution.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Youxin Liu ◽  
Yang Dai

Abstract The objective of this work is to show a new kind of mean-field anticipated backward stochastic differential equation (in short MF-ABSDE) driven by time-changed Lévy noises. We give two methods to prove the existence and uniqueness of the solution of those equations by the fixed point theorem and the Picard iterative sequence. Finally, we obtain a comparison theorem for the solutions.


2014 ◽  
Vol 15 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Li-Shun Xiao ◽  
Sheng-Jun Fan ◽  
Na Xu

In this paper, we are interested in solving general time interval multidimensional backward stochastic differential equation in Lp (p ≥ 1). We first study the existence and uniqueness for Lp (p > 1) solutions by the method of convolution and weak convergence when the generator is monotonic in y and Lipschitz continuous in z both non-uniformly with respect to t. Then we obtain the existence and uniqueness for L1 solutions with an additional assumption that the generator has a sublinear growth in z non-uniformly with respect to t.


1987 ◽  
Vol 24 (02) ◽  
pp. 370-377 ◽  
Author(s):  
E. J. Pauwels

The purpose of this paper is to show that smoothness conditions on the diffusion and drift coefficient of a one-dimensional stochastic differential equation imply the existence and smoothness of a first-passage density. In order to be able to prove this, we shall show that Brownian motion conditioned to first hit a point at a specified time has the same distribution as a Bessel (3)-process with changed time scale.


2020 ◽  
Vol 28 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Mohamed El Jamali ◽  
Mohamed El Otmani

AbstractIn this paper, we study the solution of a backward stochastic differential equation driven by a Lévy process with one rcll reflecting barrier. We show the existence and uniqueness of a solution by means of the penalization method when the coefficient is stochastic Lipschitz. As an application, we give a fair price of an American option.


Sign in / Sign up

Export Citation Format

Share Document