On Hilbert polynomial of certain determinantal ideals
LetX=(Xij)be anm(1)bym(2)matrix whose entriesXij,1≤i≤m(1),1≤j≤m(2); are indeterminates over a fieldK. LetK[X]be the polynomial ring in thesem(1)m(2)variables overK. A part of the second fundamental theorem of Invariant Theory says that the idealI[p+1]inK[X], generated by(p+1)by(p+1)minors ofXis prime. More generally in [1], Abhyankar defines an idealI[p+a]inK[X], generated by different size minors ofXand not only proves its primeness but also calculates the Hilbert function as well as the Hilbert polynomial of this ideal. The said Hilbert polynomial is completely determined by certain integer valued functionsFD(m,p,a). In this paper we prove some important properties of these integer valued functions.