scholarly journals Fixed-point theorems for multivalued non-expansive mappings without uniform convexity

2003 ◽  
Vol 2003 (6) ◽  
pp. 375-386 ◽  
Author(s):  
T. Domínguez Benavides ◽  
P. Lorenzo Ramírez

LetXbe a Banach space whose characteristic of noncompact convexity is less than1and satisfies the nonstrict Opial condition. LetCbe a bounded closed convex subset ofX,KC(C)the family of all compact convex subsets ofC, andTa nonexpansive mapping fromCintoKC(C). We prove thatThas a fixed point. The nonstrict Opial condition can be removed if, in addition,Tis a1-χ-contractive mapping.

2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
S. Plubtieng ◽  
P. Kumam

Let (Ω,Σ) be a measurable space, with Σ a sigma-algebra of subset of Ω, and let C be a nonempty bounded closed convex separable subset of a Banach space X, whose characteristic of noncompact convexity is less than 1, KC(X) the family of all compact convex subsets of X. We prove that a multivalued nonexpansive non-self-random operator T:Ω×C→KC(X), 1-χ-contractive mapping, satisfying an inwardness condition has a random fixed point.


2017 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
AHMED H. SOLIMAN ◽  
MOHAMMAD IMDAD ◽  
MD AHMADULLAH

In this paper, we consider a new uniformly generalized Kannan type semigroup of self-mappings defined on a closed convex subset of a real Banach space equipped with uniform normal structure and employ the same to show that such semigroup of self-mappings admits a common fixed point provided the underlying semigroup of self-mappings has a bounded orbit.


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


1975 ◽  
Vol 13 (2) ◽  
pp. 241-254 ◽  
Author(s):  
E. Tarafdar

Let (E, τ) be a locally convex linear Hausdorff topological space. We have proved mainly the following results.(i) Let f be nonexpansive on a nonempty τ-sequentially complete, τ-bounded, and starshaped subset M of E and let (I-f) map τ-bounded and τ-sequentially closed subsets of M into τ-sequentially closed subsets of M. Then f has a fixed-point in M.(ii) Let f be nonexpansive on a nonempty, τ-sequentially compact, and starshaped subset M of E. Then f has a fixed-point in M.(iii) Let (E, τ) be τ-quasi-complete. Let X be a nonempty, τ-bounded, τ-closed, and convex subset of E and M be a τ-compact subset of X. Let F be a commutative family of nonexpansive mappings on X having the property that for some f1 ∈ F and for each x ∈ X, τ-closure of the setcontains a point of M. Then the family F has a common fixed-point in M.


1976 ◽  
Vol 15 (1) ◽  
pp. 87-96
Author(s):  
John Staples

The notion of asymptotic centre of a bounded sequence of points in a uniformly convex Banach space was introduced by Edelstein in order to prove, in a quasi-constructive way, fixed point theorems for nonexpansive and similar maps.Similar theorems have also been proved by, for example, adding a compactness hypothesis to the restrictions on the domain of the maps. In such proofs, which are generally less constructive, it may be possible to weaken the uniform convexity hypothesis.In this paper Edelstein's technique is extended by defining a notion of asymptotic centre for an arbitrary set of nonempty bounded subsets of a metric space. It is shown that when the metric space is uniformly rotund and complete, and when the set of bounded subsets is a filter base, this filter base has a unique asymptotic centre. This fact is used to derive, in a uniform way, several fixed point theorems for nonexpansive and similar maps, both single-valued and many-valued.Though related to known results, each of the fixed point theorems proved is either stronger than the corresponding known result, or has a compactness hypothesis replaced by the assumption of uniform convexity.


2019 ◽  
Vol 26 (4) ◽  
pp. 629-636
Author(s):  
Monther Rashed Alfuraidan

Abstract Let {(X,\lVert\,\cdot\,\rVert)} be a Banach space. Let C be a nonempty, bounded, closed and convex subset of X and let {T:C\rightarrow C} be a G-monotone nonexpansive mapping. In this work, it is shown that the Mann iteration sequence defined by x_{n+1}=t_{n}T(x_{n})+(1-t_{n})x_{n},\quad n=1,2,\dots, proves the existence of a fixed point of G-monotone nonexpansive mappings.


2005 ◽  
Vol 2005 (11) ◽  
pp. 1685-1692 ◽  
Author(s):  
Somyot Plubtieng ◽  
Rabian Wangkeeree

Suppose thatCis a nonempty closed convex subset of a real uniformly convex Banach spaceX. LetT:C→Cbe an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that ifTis uniformlyL-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point ofT.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
M. Djedidi ◽  
K. Nachi

We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex subset of a reflexive Banach space into itself under some asymptotic contraction assumptions. Some existence results of coincidence points and eigenvalues for multimappings are given.


Author(s):  
Anthony To-Ming Lau ◽  
Yong Zhang

Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.


2021 ◽  
Vol 38 (1) ◽  
pp. 169-178
Author(s):  
SAYANTAN PANJA ◽  
◽  
MANTU SAHA ◽  
RAVINDRA K. BISHT ◽  
◽  
...  

In this article, we consider the non-linear semigroup of \textit{enriched Kannan} contractive mapping and prove the existence of common fixed point on a non-empty closed convex subset $\mathcal C$ of a real Banach space $\mathscr X$, having uniformly normal structure.


Sign in / Sign up

Export Citation Format

Share Document