scholarly journals Opposition based red wolf algorithm for solving optimal reactive power problem

Author(s):  
Lenin Kanagasabai

<p>This paper presents an opposition based red wolf optimization (ORWO) algorithm for solving optimal reactive power problem. Each red wolf has a flag vector in the algorithm, and length is equivalent to the whole sum of numbers which features in the dataset of the wolf optimization (WO). In this proposed algorithm, red wolf optimization algorithm has been intermingled with opposition-based learning (OBL). By this amalgamate procedure the convergence speed of the proposed algorithm will be increased. To discover an improved candidate solution, the concurrent consideration of a probable and its corresponding opposite are estimated which is closer to the global optimum than an arbitrary candidate solution. Proposed algorithm has been tested in standard IEEE 14-bus and 300-bus test systems. The simulation results show that the proposed algorithm reduced the real power loss considerably.</p>

Author(s):  
Lenin Kanagasabai

<p class="Author">This paper proposes Enriched Brain Storm Optimization (EBSO) algorithm is used for soving reactive power problem. Human being are the most intellectual creature in this world. Unsurprisingly, optimization algorithm stimulated by human being inspired problem solving procedure should be advanced than the optimization algorithms enthused by collective deeds of ants, bee, etc. In this paper, we commence a new Enriched brain storm optimization algorithm, which was enthused by the human brainstorming course of action. In the projected Enriched Brain Storm Optimization (EBSO) algorithm, the vibrant clustering strategy is used to perk up the k-means clustering process. The most important view of the vibrant clustering strategy is that; regularly execute the k-means clustering after a definite number of generations, so that the swapping of information wrap all ideas in the clusters to accomplish suitable searching capability. This new approach leads to wonderful results with little computational efforts. In order to evaluate the efficiency of the proposed Enriched Brain Storm Optimization (EBSO) algorithm, has been tested standard IEEE 118 &amp; practical 191 bus test systems and compared to other standard reported algorithms. Simulation results show that Enriched Brain Storm Optimization (EBSO) algorithm is superior to other algorithms in reducing the real power loss.</p>


2018 ◽  
Vol 6 (8) ◽  
pp. 105-113
Author(s):  
K. Lenin

This paper proposes Improved Brain Storm Optimization (IBSO) algorithm is used for solving reactive power problem. predictably, optimization algorithm stimulated by human being inspired problem-solving procedure should be highly developed than the optimization algorithms enthused by collective deeds of ants, bee, etc. In this paper, a new Improved brain storm optimization algorithm defined, which was stimulated by the human brainstorming course of action. In the projected Improved Brain Storm Optimization (IBSO) algorithm, the vibrant clustering strategy is used to perk up the k-means clustering process & exchange of information wrap all ideas in the clusters to accomplish suitable searching capability. This new approach leads to wonderful results with little computational efforts. In order to evaluate the efficiency of the proposed Improved Brain Storm Optimization (IBSO) algorithm, has been tested standard IEEE 30 bus test system and compared to other standard reported algorithms. Simulation results show that Improved Brain Storm Optimization (IBSO) algorithm is superior to other algorithms in reducing the real power loss.


Author(s):  
K. Lenin

This paper presents a new Lava Heron Optimization (LHO) Algorithm for solving reactive power problem. This algorithm is inspired by the grab skill of the Lava Heron bird. Lava heron bird live in on the freshwater or saline water, swampy marshes or wetlands with tuft of trees mostly in low lying areas, where there are abundant convenience of fishes as their prey. By using the prey catching skill of the Lava Heron bird algorithm has been framed and utilized to minimize the real power loss. Proposed Lava Heron Optimization (LHO) Algorithm has been tested in standard IEEE 57,118 bus systems and simulation results demonstrate the commendable performance of the projected Lava Heron Optimization (LHO) Algorithm in reducing the real power loss.


Author(s):  
K. Lenin ◽  
B. Ravindhranath Reddy ◽  
M. Suryakalavathi

This paper presents a nature inspired heuristic optimization algorithm based on lightning progression called the propagation algorithm (PA) to solve optimal reactive power problem. It is from the imitated natural phenomenon of lightning and the procedure of step frontrunner propagation using the theory of fast particles. Three particle kinds are established to distinguish the transition particles that produce the first step frontrunner population, the space particles that attempt to turn out to be the frontrunner, and the prime particle that epitomize the particle thrilled from best positioned step frontrunner. The proposed PA has been tested in standard IEEE 30,57,118 bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss with control variables within the limits.


Author(s):  
Kanagasabai Lenin

<p><span lang="EN-US">This paper projects Gryllidae Optimization Algorithm (GOA) has been applied to solve optimal reactive power problem. Proposed GOA approach is based on the chirping characteristics of Gryllidae. In common, male Gryllidae chirp, on the other hand some female Gryllidae also do as well. Male Gryllidae draw the females by this sound which they produce. Moreover, they caution the other Gryllidae against dangers with this sound. The hearing organs of the Gryllidae are housed in an expansion of their forelegs. Through this, they bias to the produced fluttering sounds. Proposed Gryllidae Optimization Algorithm (GOA) has been tested in standard IEEE 14, 30 bus test systems and simulation results show that the projected algorithms reduced the real power loss considerably.</span></p>


Author(s):  
Kanagasabai Lenin

<span>This paper proposes polar wolf optimization (PWO) algorithm to solve the optimal reactive power problem. Proposed algorithm enthused from actions of polar wolves. Leader’s wolves which denoted as </span>x<sub>α</sub> <span>are accountable for taking judgment on hunting, resting place, time to awaken etc. second level is </span>x<sub>β</sub> <span>those acts when there is need of substitute in first case. Then </span>x<sub>γ</sub> <span>be as final level of the wolves. In the modeling social hierarchy is developed to discover the most excellent solutions acquired so far. Then the encircling method is used to describe circle-shaped vicinity around every candidate solutions. In order to agents work in a binary space, the position modernized accordingly. Proposed PWO algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the projected algorithms reduced the real power loss considerably.</span>


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


2018 ◽  
Vol 6 (11) ◽  
pp. 299-306
Author(s):  
K. Lenin

This paper presents Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) is proposed to solve optimal reactive power problem. The proposed Hybridized - Simulated Annealing, Nelder-Mead algorithm starts with a prime solution, which is produced arbitrarily and then the solution is disturbed into partitions. The vicinity zone is created, arbitrary numbers of partitions are selected and variables modernizing procedure is started in order to create a trail of neighbour solutions. This procedure helps the SN algorithm to explore the region around an existing iterate solution. The Nelder- Mead algorithm is used in the last stage in order to progress the most excellent solution found so far and hasten the convergence in the closing stage. The proposed Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) has been tested in standard IEEE 57,118 bus systems and simulation results show the superior performance of the proposed SN algorithm in reducing the real power loss and voltage profiles are within the limits.


2018 ◽  
Vol 6 (4) ◽  
pp. 301-311
Author(s):  
K. Lenin

In this paper Enhanced Spider (ES) algorithm is proposed to solve reactive power Problem. Enthused by the spiders, a new Enhanced Spider (ES) algorithm is utilized to solve reactive power problem. The composition is primarily based on the foraging approach of social spiders, which make use of of the vibrations spread over the spider web to choose the position of prey. The simulation results demonstrate high-quality performance of Enhanced Spider (ES) algorithm in solving reactive power problem.  The projected Enhanced Spider (ES) algorithm has been tested in standard IEEE 57,118 bus systems and compared to other reported standard algorithms. Results show that Enhanced Spider (ES) algorithm is more efficient than other algorithms in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the optimal reactive power problem. Kidney search algorithm imitates the various sequences of functions done by biological kidney. Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the convergence speed of different optimization techniques. The thriving implementation of the OBL engages evaluation of opposite population and existing population in the similar generation to discover the superior candidate solution of a given reactive power problem.  Proposed Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the proposed algorithm reduced the real power loss efficiently.


Sign in / Sign up

Export Citation Format

Share Document