scholarly journals Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods

Author(s):  
Fredy Edimer Hoyos ◽  
John Edwin Candelo ◽  
John Alexander Taborda

This paper presents a methodology based on two interrelated rapid prototyping processes in order to find the best correspondence between theoretical, simulated, and experimental results of a power converter controlled by a digital PWM. The method supplements rapid control prototyping (RCP) with effective math tools to quickly select and validate models of a controlled system. We show stability analysis of the classical and two modified buck converter models controlled by zero average dynamics (ZAD) and fixed-point induction control (FPIC). The methodology consists of obtaining the mathematical representation of power converters with the controllers and the Lyapunov Exponents (LEs). Besides, the theoretical results are compared with the simulated and experimental results by means of one- and two-parameter bifurcation diagrams. The responses of the three models are compared by changing the parameter K_s of the ZAD and the parameter N of the FPIC. The results show that the stability zones, periodic orbits, periodic bands, and chaos are obtained for the three models, finding more similarities between theoretical, simulated, and experimental tests with the third model of the buck converter with ZAD and FPIC as it considers more parameters related to the losses in different elements of the system. Additionally, the intervals of the chaos are obtained by using the LEs and validated by numerical and experimental tests

2015 ◽  
Vol 25 (04) ◽  
pp. 1550049 ◽  
Author(s):  
Fredy Edimer Hoyos Velasco ◽  
Nicolás Toro García ◽  
Yeison Alberto Garcés Gómez

In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD–FPIC control techniques are shown.


2020 ◽  
Vol 7 (1) ◽  
pp. 10-18
Author(s):  
Songcen Wang ◽  
Xiaokang Wu ◽  
Ying Yang ◽  
Cong Zhu ◽  
Zhen Wu ◽  
...  

AbstractAiming at the influence of coupling coefficient variation on the output voltage of a high-power LCC-S topology inductively coupled power transfer (ICPT) system, a synchronous three-phase triple-parallel Buck converter is used as the voltage adjustment unit. The control method for the three-phase current sharing of synchronous three-phase triple-parallel Buck converter and the constant voltage output ICPT system under the coupling coefficient variation is studied. Firstly, the hybrid model consisting of the circuit averaging model of the three-phase triple-parallel Buck converter and the generalized state-space average model for the LCC-S type ICPT system is established. Then, the control methods for three-phase current sharing of the synchronous three-phase triple-parallel Buck converter and constant voltage output of ICPT system are studied to achieve the multi-objective integrated control of the system. Finally, a 3.3 kW wireless charging system platform is built, the experimental results have verified the effectiveness of the proposed modeling and control method, and demonstrated the stability of the ICPT system.


Author(s):  
X. Cheng ◽  
J.M.A. Scherpen

Network systems consist of subsystems and their interconnections and provide a powerful framework for the analysis, modeling, and control of complex systems. However, subsystems may have high-dimensional dynamics and a large number of complex interconnections, and it is therefore relevant to study reduction methods for network systems. Here, we provide an overview of reduction methods for both the topological (interconnection) structure of a network and the dynamics of the nodes while preserving structural properties of the network. We first review topological complexity reduction methods based on graph clustering and aggregation, producing a reduced-order network model. Next, we consider reduction of the nodal dynamics using extensions of classical methods while preserving the stability and synchronization properties. Finally, we present a structure-preserving generalized balancing method for simultaneously simplifying the topological structure and the order of the nodal dynamics. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
A. Narimani ◽  
M. F. Golnaraghi

This paper presents experimental investigation of modeling and control of magnetorhological damper for transient base excitation inputs. Force characteristics of a commercially available MR damper (RD-1005-3) for shock and other transient base excitation are analytically obtained and validated using a scaled suspension model. The proposed model characterizes damper behavior more accurately and efficiently for analytical applications. The time and frequency responses of the developed model are compared with the experimental results and show good agreement. Finally, using the RMS optimization method the performance of the system for different types of controllers is compared with the optimal values of linear isolator system. Experimental results show that the performance of base isolation systems for transient and shock inputs significantly improves by utilizing a controlled semi-active damper over uncontrolled MR damper or an optimally designed passive isolator.


Author(s):  
Liran Li ◽  
◽  
Zhiwu Huang ◽  
Heng Li ◽  
Xiaohui Qu ◽  
...  

Electronically controlled pneumatic (ECP) brake systems have become popular in heavy-duty train applications because of their advantages, which include shorter stopping distances, improved handling, and less brake-shoe and wheel wear. In ECP brake systems, an improved power supply is required to support efficient and reliable operations. In this paper, we propose a new power converter for ECP brake systems, which is derived from a conventional push-pull converter. As opposed to conventional push-pull converters, we insert a clamping capacitor into the proposed circuit. This clamping capacitor simultaneously enables a greater number of operation modes for the proposed converter and absorbs the voltage spikes in the switch. The proposed converter is more suited for ECP brake applications that require high power, low voltage ripple, and high impedance. We theoretically analyze the proposed converter, and present the design guidelines. Further, we discuss the modeling and control aspects. We demonstrate the operations of the proposed model by performing both simulations and experiments.


2007 ◽  
Vol 17 (03) ◽  
pp. 193-206 ◽  
Author(s):  
L. LAN ◽  
K. Y. ZHU

Computer modeling and control of the human motor system might be helpful for understanding the mechanism of human motor system and for the diagnosis and treatment of neuromuscular disorders. In this paper, a brief view of the equilibrium point hypothesis for human motor system modeling is given, and the λ-model derived from this hypothesis is studied. The stability of the λ-model based on equilibrium and Jacobian matrix is investigated. The results obtained in this paper suggest that the λ-model is stable and has a unique equilibrium point under certain conditions.


Sign in / Sign up

Export Citation Format

Share Document