Responses of Tropical Deep Convection to the QBO: Cloud-Resolving Simulations

2015 ◽  
Vol 72 (9) ◽  
pp. 3625-3638 ◽  
Author(s):  
Ji Nie ◽  
Adam H. Sobel

Abstract Observational studies suggest that the stratospheric quasi-biennial oscillation (QBO) can modulate tropical deep convection. The authors use a cloud-resolving model with a limited domain, representing a convective column in the tropics, to study the mechanisms of this modulation. The large-scale circulation is parameterized using the weak temperature gradient (WTG) approximation, under which the parameterized large-scale vertical motion acts to relax the horizontal-mean temperature toward a specified reference profile. Temperature variations typically seen in easterly and westerly phases are imposed in the upper troposphere and lower stratosphere of this reference profile. The responses of convection are studied over different sea surface temperatures, holding the reference temperature profile fixed. This can be thought of as studying the response of convection to the QBO over different “relative SSTs” and also corresponds to different equilibrium precipitation rates in the control simulation. The equilibrium precipitation rate shows slight increases in response to a QBO easterly phase temperature perturbation over small SST anomalies and strong decreases over large SST anomalies, and vice versa for the QBO westerly phase perturbation. A column moist static energy budget analysis reveals that the QBO modulates the convective precipitation through two pathways: it changes the high-cloud properties and thus the column radiative cooling, and it alters the shape of the large-scale vertical motion and thus the efficiency of energy transport by the large-scale flow. The nonmonotonicity of the precipitation response with respect to relative SST results from the competition of these two effects.

2015 ◽  
Vol 72 (9) ◽  
pp. 3378-3388 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The effects of turbulent surface fluxes and radiative heating on tropical deep convection are compared in a series of idealized cloud-system-resolving simulations with parameterized large-scale dynamics. Two methods of parameterizing the large-scale dynamics are used: the weak temperature gradient (WTG) approximation and the damped gravity wave (DGW) method. Both surface fluxes and radiative heating are specified, with radiative heating taken as constant in the vertical in the troposphere. All simulations are run to statistical equilibrium. In the precipitating equilibria, which result from sufficiently moist initial conditions, an increment in surface fluxes produces more precipitation than an equal increment of column-integrated radiative heating. This is straightforwardly understood in terms of the column-integrated moist static energy budget with constant normalized gross moist stability. Under both large-scale parameterizations, the gross moist stability does in fact remain close to constant over a wide range of forcings, and the small variations that occur are similar for equal increments of surface flux and radiative heating. With completely dry initial conditions, the WTG simulations exhibit hysteresis, maintaining a dry state with no precipitation for a wide range of net energy inputs to the atmospheric column. The same boundary conditions and forcings admit a rainy state also (for moist initial conditions), and thus multiple equilibria exist under WTG. When the net forcing (surface fluxes minus radiative heating) is increased enough that simulations that begin dry eventually develop precipitation, the dry state persists longer after initialization when the surface fluxes are increased than when radiative heating is increased. The DGW method, however, shows no multiple equilibria in any of the simulations.


2017 ◽  
Vol 17 (2) ◽  
pp. 793-806 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin-wave activity are investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool for quantifying tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show the strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient sub-seasonal waves (2 K2), and about half of sub-seasonal variance is explained by eastward-traveling Kelvin waves with periods of 4 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and interannual variability contribute about a third (1 K2) to total resolved zonal variance. Sub-seasonal waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin-wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


2020 ◽  
Author(s):  
Xinyue Wang ◽  
William Randel ◽  
Yutian Wu

<p>We study fast transport of air from the surface into the North American upper troposphere-lower stratosphere (UTLS) during northern summer with a large ensemble of Boundary Impulse Response (BIR) idealized tracers. Specifically, we implement 90 pulse tracers at the Northern Hemisphere surface and release them during July and August months in the fully coupled Whole Atmosphere Community Climate Model (WACCM) version 5. We focus on the most efficient transport cases above southern U.S. (10°-40°N, 60°-140°W) at 100 hPa with modal ages fall below 10th percentile. We examine transport-related terms, including resolved dynamics computed inside model transport scheme and parameterized processes (vertical diffusion and convective parameterization), to pin down the dominant dynamical mechanism. Our results show during the fastest transport, air parcels enter ULTS directly above the Gulf of Mexico. The budget analysis indicates that strong deep convection over the Gulf of Mexico fast uplift the tracer into 200 hPa, and then is vertically advected into 100 hPa and circulated by the enhanced large-scale anticyclone. </p>


2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


2009 ◽  
Vol 137 (11) ◽  
pp. 3933-3959 ◽  
Author(s):  
Beatriz M. Funatsu ◽  
Chantal Claud ◽  
Jean-Pierre Chaboureau

Abstract A characterization of the large-scale environment associated with precipitating systems in the Mediterranean region, based mainly on NOAA-16 Advanced Microwave Sounding Unit (AMSU) observations from 2001 to 2007, is presented. Channels 5, 7, and 8 of AMSU-A are used to identify upper-level features, while a simple and tractable method, based on combinations of channels 3–5 of AMSU-B and insensitive to land–sea contrast, was used to identify precipitation. Rain occurrence is widespread over the Mediterranean in wintertime while reduced or short lived in the eastern part of the basin in summer. The location of convective precipitation shifts from mostly over land from April to August, to mostly over the sea from September to December. A composite analysis depicting large-scale conditions, for cases of either rain alone or extensive areas of deep convection, is performed for selected locations where the occurrence of intense rainfall was found to be important. In both cases, an upper-level trough is seen to the west of the target area, but for extreme rainfall the trough is narrower and has larger amplitude in all seasons. In general, these troughs are also deeper for extreme rainfall. Based on the European Centre for Medium-Range Weather Forecasts operational analyses, it was found that sea surface temperature anomalies composites for extreme rainfall are often about 1 K warmer, compared to nonconvective precipitation conditions, in the vicinity of the affected area, and the wind speed at 850 hPa is also stronger and usually coming from the sea.


2021 ◽  
Author(s):  
Ashish R Dhakate ◽  
Prasanth A. Pillai

Abstract Indian summer monsoon rainfall (ISMR) variability of ±10% of its long-term mean leads to flood and drought, affecting the life and economic situation of the country. It is already established that the interannual variability of ISMR is influenced by large scale boundary forcing such as SST anomalies of tropical Pacific, Indian and Atlantic Oceans. The ISMR association between Pacific SST anomalies in the form of El Nino Southern Oscillation (ENSO) is only studied in detail. Meanwhile, the present and previous studies show that the ENSO accounts for around 50% of the extreme years, while the other half is associated with other processes. A differentiation between extremes induced by ENSO and non-ENSO processes are attempted here with the help of moisture and moist static energy budget. The significant contribution to the rainfall extremes comes from moisture advection induced by anomalous winds generated by the boundary forcing and the secondary contribution from moisture convergence. For the non-ENSO cases, there is a contribution from local fluxes, which are not prominent in the cases of ENSO induced cases. In the ENSO cases, anomalous winds are from the equatorial central Pacific, while EQWIN/IOD cases influence extremes through the local evaporation and moisture advection from the Indian Ocean. Extreme years independent of ENSO/IOD/ EQWIN have moisture advection from the anomalous winds across Africa and the Atlantic and are associated with moisture advection toward the northern parts of India. These differences in moisture processes are responsible for the difference in rainfall distribution over India also.


1998 ◽  
Vol 25 (3) ◽  
pp. 333-336 ◽  
Author(s):  
Christopher C. Collimore ◽  
Matthew H. Hitchman ◽  
David W. Martin

2013 ◽  
Vol 70 (11) ◽  
pp. 3533-3555 ◽  
Author(s):  
Hugh Morrison ◽  
Wojciech W. Grabowski

Abstract A cloud-system-resolving model is used to investigate the effects of localized heating/cooling perturbations on tropical deep convection, in the context of the aerosol “invigoration effect.” This effect supposes that a reduction of droplet collision–coalescence in polluted conditions leads to lofting of cloud water in convective updrafts and enhanced freezing, latent heating, and buoyancy. To specifically isolate and test this mechanism, heating perturbations were applied to updrafts with corresponding cooling applied in downdrafts. Ensemble simulations were run with either perturbed or unperturbed conditions and large-scale forcing from a 7.5-day period of active monsoon conditions during the 2006 Tropical Warm Pool–International Cloud Experiment. In the perturbed simulations there was an initial invigoration of convective updrafts and surface precipitation, but convection returned to its unperturbed state after about 24 h because of feedback with the larger-scale environment. This feedback led to an increase in the horizontally averaged mid-/upper-tropospheric temperature of about 1 K relative to unperturbed simulations. When perturbed conditions were applied to only part of the domain, gravity waves rapidly dispersed buoyancy anomalies in the perturbed region to the rest of the domain, allowing convective invigoration from the heating perturbations to be sustained over the entire simulation period. This was associated with a mean mesoscale circulation consisting of ascent (descent) at mid-/upper levels in the perturbed (unperturbed) region. In contrast to recent studies, it is concluded that the invigoration effect is intimately coupled with larger-scale dynamics through a two-way feedback, and in the absence of alterations in the larger-scale circulation there is limited invigoration beyond the convective adjustment time scale.


2020 ◽  
Author(s):  
Hyunju Jung ◽  
Ann Kristin Naumann ◽  
Bjorn Stevens

Abstract. Convective self-aggregation is an atmospheric phenomenon found in numerical simulations in a radiative convective equilibrium framework of which configuration captures the main characteristics of the real-world convection in the deep tropics. As tropical deep convection is typically embedded in a large-scale flow, we impose a background mean wind flow on convection-permitting simulations through the surface flux calculation. The simulations show that with imposing mean flow, the organized convective system propagates in the direction of the flow but slows down compared to what pure advection would suggest, and eventually becomes stationary relative to the surface after 15 simulation days. The termination of the propagation arises from momentum flux, which acts as a drag on the near-surface horizontal wind. In contrast, the thermodynamic response through the wind-induced surface heat exchange feedback is a relatively small effect, which slightly retards (by about 15 %) the convection relative to the mean wind.


Sign in / Sign up

Export Citation Format

Share Document