scholarly journals The Role of Inner-Core Moisture in Tropical Cyclone Predictability and Practical Forecast Skill

2017 ◽  
Vol 74 (7) ◽  
pp. 2315-2324 ◽  
Author(s):  
Kerry Emanuel ◽  
Fuqing Zhang

Abstract Errors in tropical cyclone intensity forecasts are dominated by initial-condition errors out to at least a few days. Initialization errors are usually thought of in terms of position and intensity, but here it is shown that growth of intensity error is at least as sensitive to the specification of inner-core moisture as to that of the wind field. Implications of this finding for tropical cyclone observational strategies and for overall predictability of storm intensity are discussed.

2016 ◽  
Vol 73 (9) ◽  
pp. 3739-3747 ◽  
Author(s):  
Kerry Emanuel ◽  
Fuqing Zhang

Abstract The skill of tropical cyclone intensity forecasts has improved slowly since such forecasts became routine, even though track forecast skill has increased markedly over the same period. In deciding whether or how best to improve intensity forecasts, it is useful to estimate fundamental predictability limits as well as sources of intensity error. Toward that end, the authors estimate rates of error growth in a “perfect model” framework in which the same model is used to explore the sensitivities of tropical cyclone intensity to perturbations in the initial storm intensity and large-scale environment. These are compared to estimates made in previous studies and to intensity error growth in real-time forecasts made using the same model, in which model error also plays an important role. The authors find that error growth over approximately the first few days in the perfect model framework is dominated by errors in initial intensity, after which errors in forecasting the track and large-scale kinematic environment become more pronounced. Errors owing solely to misgauging initial intensity are particularly large for storms about to undergo rapid intensification and are systematically larger when initial intensity is underestimated compared to overestimating initial intensity by the same amount. There remains an appreciable gap between actual and realistically achievable forecast skill, which this study suggests can best be closed by improved models, better observations, and superior data assimilation techniques.


2017 ◽  
Vol 98 (10) ◽  
pp. 2113-2134 ◽  
Author(s):  
James D. Doyle ◽  
Jonathan R. Moskaitis ◽  
Joel W. Feldmeier ◽  
Ronald J. Ferek ◽  
Mark Beaubien ◽  
...  

Abstract Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.


2014 ◽  
Vol 142 (8) ◽  
pp. 2860-2878 ◽  
Author(s):  
Ryan D. Torn

Abstract The value of assimilating targeted dropwindsonde observations meant to improve tropical cyclone intensity forecasts is evaluated using data collected during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field project and a cycling ensemble Kalman filter. For each of the four initialization times studied, four different sets of Weather Research and Forecasting Model (WRF) ensemble forecasts are produced: one without any dropwindsonde data, one with all dropwindsonde data assimilated, one where a small subset of “targeted” dropwindsondes are identified using the ensemble-based sensitivity method, and a set of randomly selected dropwindsondes. For all four cases, the assimilation of dropwindsondes leads to an improved intensity forecast, with the targeted dropwindsonde experiment recovering at least 80% of the difference between the experiment where all dropwindsondes and no dropwindsondes are assimilated. By contrast, assimilating randomly selected dropwindsondes leads to a smaller impact in three of the four cases. In general, zonal and meridional wind observations at or below 700 hPa have the largest impact on the forecast due to the large sensitivity of the intensity forecast to the horizontal wind components at these levels and relatively large ensemble standard deviation relative to the assumed observation errors.


2012 ◽  
Vol 69 (8) ◽  
pp. 2394-2413 ◽  
Author(s):  
Brian Tang ◽  
Kerry Emanuel

Abstract The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the upper-level warm core, a shift in the secondary circulation radially outward, and a decrease in the simulated intensity. Increasing the strength of the ventilation and placing the ventilation at middle to lower levels results in a greater decrease in the quasi-steady intensity, whereas upper-level ventilation has little effect on the intensity. For strong ventilation, an oscillatory intensity regime materializes and is tied to transient convective bursts and strong downdrafts into the boundary layer. The sensitivity of tropical cyclone intensity to ventilation can be viewed in the context of the mechanical efficiency of the inner core or a modified thermal wind relation. In the former, ventilation decreases the mechanical efficiency, as the generation of available potential energy is wasted by entropy mixing above the boundary layer. In the latter, ventilation weakens the eyewall entropy front, resulting in a decrease in the intensity by thermal wind arguments. The experiments also support the existence of a threshold ventilation beyond which a tropical cyclone cannot be maintained. Downdrafts overwhelm surface fluxes, leading to a precipitous drop in intensity and a severe degradation of structure in such a scenario. For a given amount of ventilation below the threshold, there exists a minimum initial intensity necessary for intensification to the quasi-steady intensity.


Sign in / Sign up

Export Citation Format

Share Document