The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part II: The In Situ Generation of Gravity Waves

2018 ◽  
Vol 75 (10) ◽  
pp. 3635-3651 ◽  
Author(s):  
Ryosuke Yasui ◽  
Kaoru Sato ◽  
Yasunobu Miyoshi

The contributions of gravity waves to the momentum budget in the mesosphere and lower thermosphere (MLT) is examined using simulation data from the Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA) whole-atmosphere model. Regardless of the relatively coarse model resolution, gravity waves appear in the MLT region. The resolved gravity waves largely contribute to the MLT momentum budget. A pair of positive and negative Eliassen–Palm flux divergences of the resolved gravity waves are observed in the summer MLT region, suggesting that the resolved gravity waves are likely in situ generated in the MLT region. In the summer MLT region, the mean zonal winds have a strong vertical shear that is likely formed by parameterized gravity wave forcing. The Richardson number sometimes becomes less than a quarter in the strong-shear region, suggesting that the resolved gravity waves are generated by shear instability. In addition, shear instability occurs in the low (middle) latitudes of the summer (winter) MLT region and is associated with diurnal (semidiurnal) migrating tides. Resolved gravity waves are also radiated from these regions. In Part I of this paper, it was shown that Rossby waves in the MLT region are also radiated by the barotropic and/or baroclinic instability formed by parameterized gravity wave forcing. These results strongly suggest that the forcing by gravity waves originating from the lower atmosphere causes the barotropic/baroclinic and shear instabilities in the mesosphere that, respectively, generate Rossby and gravity waves and suggest that the in situ generation and dissipation of these waves play important roles in the momentum budget of the MLT region.

2011 ◽  
Vol 29 (4) ◽  
pp. 623-629 ◽  
Author(s):  
N. Venkateswara Rao ◽  
Y. Shibagaki ◽  
T. Tsuda

Abstract. We study short period gravity waves (20–120 min) in the equatorial Mesosphere and Lower Thermosphere (MLT) using a Medium Frequency (MF) radar at Pameungpeuk (7.4° S, 107.4° E), Indonesia. In particular, we study local time and seasonal variation of the gravity wave variance and its relation to tropical convection. The gravity wave variance at 88 km enhances between 20:00 LT and 07:00 LT, with a peak at 02:00–03:00 LT. The enhancement is mainly observed during February–April and September–October and shows inter-annual variability. Convective activity over the same location persists from 16:00–21:00 LT with a peak activity ~18:00 LT and enhances between November–April. Time delay between the peak of convection and that of gravity wave activity ranges 1–15 h, which is consistent with theoretical calculations and previous reports based on reverse ray tracing analysis.


2006 ◽  
Vol 6 (5) ◽  
pp. 9085-9121 ◽  
Author(s):  
F. Yang ◽  
M. E. Schlesinger ◽  
E. V. Rozanov ◽  
N. Andronova ◽  
V. A. Zubov ◽  
...  

Abstract. The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean-flow forcing due to breaking gravity waves at the sub-grid scale was investigated using the University of Illinois at Urbana-Champaign 40-layer General Circulation Model (GCM). The gravity-wave forcing was represented either by Rayleigh friction or by a detailed parameterization scheme with different sets of parameters. The modeled middle atmospheric temperature and circulation exhibit large sensitivity to the parameterized sub-grid gravity-wave forcing. A large warm bias of up to 50°C was found in the model's summer upper mesosphere and lower thermosphere. This warm bias was caused by the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. Attempts were made to slow down the easterly winds near the mesopause and to reduce the warm bias. The GCM was able to realistically simulate the semi-annual oscillation in the upper stratosphere and lower mesosphere with observational constraints on certain parameter values, but failed to simulate the quasi-biennial oscillation in any of the experiments. Budget analysis indicates that in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are secondary.


2006 ◽  
Vol 24 (4) ◽  
pp. 1199-1208 ◽  
Author(s):  
B. P. Williams ◽  
D. C. Fritts ◽  
C. Y. She ◽  
R. A. Goldberg

Abstract. The winter MaCWAVE (Mountain and convective waves ascending vertically) rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28–29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected –5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.


2018 ◽  
Vol 75 (10) ◽  
pp. 3613-3633 ◽  
Author(s):  
Kaoru Sato ◽  
Ryosuke Yasui ◽  
Yasunobu Miyoshi

A momentum budget is examined in the stratosphere, mesosphere, and lower thermosphere using simulation data over ~11 years from a whole-atmosphere model in terms of the respective contributions of gravity waves (GWs), Rossby waves (RWs), and tides. The GW forcing is dominant in the mesosphere and lower thermosphere (MLT), as indicated in previous studies. However, RWs also cause strong westward forcing, described by Eliassen–Palm flux divergence (EPFD), in all seasons in the MLT and in the winter stratosphere. Despite the relatively coarse model resolution, resolved GWs with large amplitudes appear in the MLT. The EPFD associated with the resolved GWs is eastward (westward) in the summer (winter) hemisphere, similar to the parameterized GW forcing. A pair of positive and negative EPFDs are associated with the RWs and GWs in the MLT. These results suggest that the RWs and resolved GWs are generated in situ in the MLT. Previous studies suggested that a possible mechanism of RW generation in the MLT is the barotropic/baroclinic instability. This study revisits this possibility and examines causes of the instability from a potential vorticity (PV) viewpoint. The instability condition is characterized as the PV maximum at middle latitudes on an isentropic surface. Positive EPFD for RWs is distributed slightly poleward of the PV maximum. Because the EPFD equals the PV flux, this feature indicates that the RW radiation acts to reduce the PV maximum. The PV maximum is climatologically maintained in both the winter and summer mesospheres, which is caused by parameterized GW forcing.


2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


2020 ◽  
Vol 20 (1) ◽  
pp. 431-455 ◽  
Author(s):  
Jörg Gumbel ◽  
Linda Megner ◽  
Ole Martin Christensen ◽  
Nickolay Ivchenko ◽  
Donal P. Murtagh ◽  
...  

Abstract. Global three-dimensional data are a key to understanding gravity waves in the mesosphere and lower thermosphere. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that addresses this need. It applies space-borne limb imaging in combination with tomographic and spectroscopic analysis to obtain gravity wave data on relevant spatial scales. Primary measurement targets are O2 atmospheric band dayglow and nightglow in the near infrared, and sunlight scattered from noctilucent clouds in the ultraviolet. While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric temperature, composition, and cloud properties. Based on these dynamical tracers, MATS will produce a climatology on wave spectra during a 2-year mission. Major scientific objectives include a characterization of gravity waves and their interaction with larger-scale waves and mean flow in the mesosphere and lower thermosphere, as well as their relationship to dynamical conditions in the lower and upper atmosphere. MATS is currently being prepared to be ready for a launch in 2020. This paper provides an overview of scientific goals, measurement concepts, instruments, and analysis ideas.


Author(s):  
Tyler Mixa ◽  
Andreas Dörnbrack ◽  
Markus Rapp

AbstractHorizontally dispersing gravity waves with horizontal wavelengths of 30 – 40 km were observed at mesospheric altitudes over Auckland Island by the airborne advanced mesospheric temperature mapper during a DEEPWAVE research flight on 14 July 2014. A 3D nonlinear compressible model is used to determine which propagation conditions enabled gravity wave penetration into the mesosphere and how the resulting instability characteristics led to widespread momentum deposition. Results indicate that linear tunneling through the polar night jet enabled quick gravity wave propagation from the surface up to the mesopause, while subsequent instability processes reveal large rolls that formed in the negative shear above the jet maximum and led to significant momentum deposition as they descended. This study suggests that gravity wave tunneling is a viable source for this case and other deep propagation events reaching the mesosphere and lower thermosphere.


Sign in / Sign up

Export Citation Format

Share Document