Influences of Summertime Arctic-Dipole Atmospheric Circulation on Sea Ice Concentration Variations in the Pacific Sector of the Arctic During Different Pacific Decadal Oscillation Phases

2021 ◽  
pp. 1-43
Author(s):  
Haibo Bi ◽  
Yunhe Wang ◽  
Yu Liang ◽  
Weifu Sun ◽  
Xi Liang ◽  
...  

AbstractAtmospheric circulation associated with the Arctic Dipole (AD) pattern plays a crucial role in modulating the variations of summertime sea ice concentration (SIC) within the Pacific Arctic sector (PAS). Based on reanalysis data and satellite observations, we found that the impacts of atmospheric circulation associated with AD+ on SIC change over different regions of the PAS (including East Siberian Sea (ESS), Beaufort and Chukchi Seas (BCS), and Canadian Arctic Archipelago (CAA)), are dependent on the phase shifts of Pacific Decadal Oscillation (PDO). Satellite observations reveal that SIC anomalies, influenced by AD+ during PDO- relative to that during PDO+, varies significantly in summer by 4.9%, -7.3%, and -6.4% over ESS, BCS, and CAA, respectively. Overall, the atmospheric anomalies over CAA and BCS in terms of specific humidity, air temperature, and thereby downward longwave radiation (DLR), are enhanced (weakened) in the atmospheric conditions associated with AD+ during PDO- (PDO+). In these two regions, the larger (smaller) increases in specific humidity and air temperature, associated with AD+ during PDO- (PDO+), are connected to the increased (decreased) poleward moisture flux, strengthened (weakened) convergence of moisture and heat flux, and partly to adiabatic heating. As a consequence, the DLR and surface net energy flux anomalies over the two regions are reinforced in the atmospheric scenarios associated with AD+ during PDO- compared with that during PDO+. Therefore, smaller SIC anomalies are identified over CAA and BCS in the cases related to AD+ during PDO- than during PDO+. Essentially, the changes of the DLR anomaly in CAA and BCS are in alignment with geopotential height anomalies, which are modulated by the anticyclonic circulation pattern in association with AD+ during varying PDO phases. In contrast, the SIC changes over ESS is primarily attributed to the variations in mechnical wind focring and sea surface temperature (SST) anomalies. The cloud fraction anomalies associated with AD+ during different PDO phases are found not to be a significant contributor to the variations of sea ice anomaly in the studied regions. Given the oscillatory nature of PDO, we speculate that the recent shift to the PDO+ phase may temporarily slow the observed significant decline trend of the summertime SIC within PAS of the Arctic.

2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


2013 ◽  
Vol 9 (6) ◽  
pp. 6515-6549 ◽  
Author(s):  
F. Klein ◽  
H. Goosse ◽  
A. Mairesse ◽  
A. de Vernal

Abstract. The consistency between a new quantitative reconstruction of Arctic sea-ice concentration based on dinocyst assemblages and the results of climate models has been investigated for the mid-Holocene. The comparison shows that the simulated sea-ice changes are weaker and spatially more homogeneous than the recorded ones. Furthermore, although the model-data agreement is relatively good in some regions such as the Labrador Sea, the skill of the models at local scale is low. The response of the models follows mainly the increase in summer insolation at large scale. This is modulated by changes in atmospheric circulation leading to differences between regions in the models that are albeit smaller than in the reconstruction. Performing simulations with data assimilation using the model LOVECLIM amplifies those regional differences, mainly through a reduction of the southward winds in the Barents Sea and an increase in the westerly winds in the Canadian Basin of the Arctic. This leads to an increase in the ice concentration in the Barents and Chukchi Seas and a better agreement with the reconstructions. This underlines the potential role of atmospheric circulation to explain the reconstructed changes during the Holocene.


2019 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schroeder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 to 80 %, is also changing. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent during the last 40 years from observations. We present simulations from a coupled sea ice-ocean mixed layer model using a prognostic floe size distribution which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the 4 satellite-derived sea ice concentration datasets used. An extrapolation of the observations shows the MIZ extent as remaining relatively constant in the coming decades, at least until the Arctic is completely covered by seasonal ice. We find a small increase in the summer MIZ fraction (MIZ extent divided by sea ice extent), which can be attributed to the reduction in total sea ice extent. The MIZ location is trending northwards, consistent with other studies. Given the results of this study, we suggest that future studies need to remain cautious and provide a specific and clear definition when stating the MIZ is ‘rapidly changing’.


2021 ◽  
Vol 13 (16) ◽  
pp. 3201
Author(s):  
Xi Wang ◽  
Jian Liu ◽  
Bingyun Yang ◽  
Yansong Bao ◽  
George P. Petropoulos ◽  
...  

A long-term dataset of 38 years (1982–2019) from the Advanced Very High Resolution Radiometer (AVHRR) satellite observations is applied to investigate the spatio-temporal seasonal trends in cloud fraction, surface downwelling longwave flux, and surface upwelling longwave flux over the Arctic seas (60~90°N) by the non-parametric methods. The results presented here provide a further contribution to understand the cloud cover and longwave surface radiation trends over the Arctic seas, and their correlations to the shrinking sea ice. Our results suggest that the cloud fraction shows a positive trend for all seasons since 2008. Both surface downwelling and upwelling longwave fluxes present significant positive trends since 1982 with higher magnitudes in autumn and winter. The spatial distribution of the trends is nearly consistent between the cloud fraction and the surface longwave radiation, except for spring over the Chukchi and Beaufort Seas. We further obtained a significant negative correlation between cloud fraction (surface downwelling/upwelling longwave fluxes) and sea-ice concentration during autumn, which is largest in magnitude for regions with substantial sea ice retreat. We found that the negative correlation between cloud fraction and sea-ice concentration is not as strong as that for the surface downwelling longwave flux. It indicates the increase in cloudiness may result in positive anomalies in surface downwelling longwave flux which is highly correlated with the sea-ice retreat in autumn.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2020 ◽  
Vol 12 (7) ◽  
pp. 1060 ◽  
Author(s):  
Lise Kilic ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Georg Heygster ◽  
Victor Pellet ◽  
...  

Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Sylvia T. Cole ◽  
John M. Toole ◽  
Ratnaksha Lele ◽  
Mary-Louise Timmermans ◽  
Shawn G. Gallaher ◽  
...  

The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal.


Sign in / Sign up

Export Citation Format

Share Document