scholarly journals A Hybrid Global Ocean Data Assimilation System at NCEP

2015 ◽  
Vol 143 (11) ◽  
pp. 4660-4677 ◽  
Author(s):  
Stephen G. Penny ◽  
David W. Behringer ◽  
James A. Carton ◽  
Eugenia Kalnay

Abstract Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR). The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.

2012 ◽  
Vol 13 (5) ◽  
pp. 1621-1630 ◽  
Author(s):  
Jesse Meng ◽  
Rongqian Yang ◽  
Helin Wei ◽  
Michael Ek ◽  
George Gayno ◽  
...  

Abstract The NCEP Climate Forecast System Reanalysis (CFSR) uses the NASA Land Information System (LIS) to create its land surface analysis: the NCEP Global Land Data Assimilation System (GLDAS). Comparing to the previous two generations of NCEP global reanalyses, this is the first time a coupled land–atmosphere data assimilation system is included in a global reanalysis. Global observed precipitation is used as direct forcing to drive the land surface analysis, rather than the typical reanalysis approach of using precipitation assimilating from a background atmospheric model simulation. Global observed snow cover and snow depth fields are used to constrain the simulated snow variables. This paper describes 1) the design and implementation of GLDAS/LIS in CFSR, 2) the forcing of the observed global precipitation and snow fields, and 3) preliminary results of global and regional soil moisture content and land surface energy and water budgets closure. With special attention made during the design of CFSR GLDAS/LIS, all the source and sink terms in the CFSR land surface energy and water budgets can be assessed and the total budgets are balanced. This is one of many aspects indicating improvements in CFSR from the previous NCEP reanalyses.


2012 ◽  
Vol 27 (3) ◽  
pp. 629-646 ◽  
Author(s):  
Min Wen ◽  
Song Yang ◽  
Augustin Vintzileos ◽  
Wayne Higgins ◽  
Renhe Zhang

Abstract A series of 60-day hindcasts by the Climate Forecast System (CFS) of the National Centers for Environmental Prediction is analyzed to understand the impacts of atmospheric model resolutions and initial conditions on predictions of the Asian summer monsoon. The experiments, for the time period 2002–06 and with 14 ensemble members, are conducted at resolutions of T62, T126, and T254. They are initialized every 5 days from May to August, using the operational global atmospheric data assimilation system and operational global ocean data assimilation. It is found that, in predicting the magnitude and the timing of monsoon rainfall over lands, high model resolutions overall perform better than lower model resolutions. The increase in prediction skills with model resolution is more apparent over South Asia than over Southeast Asia. The largest improvement is seen over the Tibetan Plateau, at least for precipitation. However, the increase in model resolution does not enhance the skill of the predictions over oceans. Overall, model resolution has larger impacts than do the initial conditions on predicting the development of the Asian summer monsoon in the early season. However, higher model resolutions such as T382 may be needed for the CFS to simulate and predict many features of the monsoon more realistically.


2019 ◽  
Vol 36 (7) ◽  
pp. 1255-1266 ◽  
Author(s):  
Mathieu Hamon ◽  
Eric Greiner ◽  
Pierre-Yves Le Traon ◽  
Elisabeth Remy

AbstractSatellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.


2015 ◽  
Vol 141 (692) ◽  
pp. 2750-2759 ◽  
Author(s):  
Takahiro Toyoda ◽  
Yosuke Fujii ◽  
Tsurane Kuragano ◽  
John P. Matthews ◽  
Hiroto Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document