scholarly journals Stiffness and permeability multi-objective optimization of carbon-fiber-reinforced plastic mesostructures using homogenization method

2018 ◽  
Vol 53 (13) ◽  
pp. 1865-1880
Author(s):  
Ryosuke Matsuzaki ◽  
Tomohiro Ishikawa ◽  
Tomonaga Okabe ◽  
Yutaka Oya ◽  
Shigeki Yashiro

This paper presents a stiffness and permeability multi-objective optimization method for carbon-fiber-reinforced plastic mesostructures based on a homogenization method. To reduce the computational cost of dealing with multiple design variables for complicated fiber mesostructures, we generate and extract effective design variables from optimization results derived from a smaller number of design variables. We applied the proposed method to optimization of the in-plane and out-of-plane stiffness and permeability of non-crimp fabrics. The optimization results showed that the application of effective design variables enabled attainment of an improved elastic modulus and permeability. From investigations of the obtained optimized design, we clarified the trade-off relationship between the elastic modulus and permeability, and elucidated the effects of dimensions of non-crimp fabric mesostructures on the elastic modulus and permeability.

2021 ◽  
Vol 1031 ◽  
pp. 234-241
Author(s):  
Irina V. Zlobina

Experimental studies of bending deformation of carbon - and fiberglass samples after 8-month exposure in full-scale conditions were performed and the modulus of transverse elasticity was determined. It was found that the influence of the external environment on fiberglass samples is more significant. For carbon fiber, there was an average decrease of 7.1%, and for fiberglass-by 14%. Modification of samples in ultrahigh frequencies (UHF) electromagnetic field reduces the negative influence of the environment: the values of the transverse elastic modulus of carbon fiber and fiberglass samples are reduced by 5% and 11%, respectively. It is shown that the UHF electromagnetic field in rational modes can increase the modulus of transverse elasticity of carbon fiber by (27-30)%, fiberglass – by (20.8-25.6)% with a significant increase in the uniformity of this parameter. Experimental studies of the bending deformation of carbon-and fiberglass specimens after 8-month exposure in natural conditions have been carried out, and the shear elastic modulus has been determined. It has been established that the influence of the external environment on fiberglass samples is more significant. For carbon fiber reinforced plastic, a decrease was noted on average by 7.1%, for fiberglass - by 14%. Modification of samples in a microwave electromagnetic field helps to reduce the negative influence of the external environment: the values ​​of the shear modulus of the prototypes of carbon fiber reinforced plastic and fiberglass are reduced by 5% and 11%, respectively. It is shown that the microwave electromagnetic field in rational modes allows increasing the transverse elastic modulus of carbon fiber reinforced plastic by (27-30)%, fiberglass - by (20.8-25.6)% with a significant increase in the uniformity of this parameter.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


2021 ◽  
pp. 073168442098359
Author(s):  
Luyao Xu ◽  
Jiuru Lu ◽  
Kangmei Li ◽  
Jun Hu

In this article, a micro-heterogeneous material simulation model with carbon fiber and resin phase about laser ablation on carbon fiber reinforced plastic (CFRP) is established by Ansys. The ablation process of CFRP by nanosecond ultraviolet laser is simulated, and the mechanism of pulse energy and spot spacing on the heat-affected zone (HAZ) is studied, then the process parameters are optimized with the goal of HAZ size and processing efficiency, and finally the validity of the model is verified by experiments. It is found that the residual gradient and the width of the radial HAZ increase with the increase of the spot spacing, and the width of the axial HAZ decreases slightly with the increase of the spot spacing, which indicates the existence of the optimal spot spacing. Second, the ablation depth increases with the increase of the pulse energy, and the carbon fiber retains a relatively complete degree of exposure when the pulse energy is low, which has a certain guiding significance for the cleaning and bonding of CFRP.


Sign in / Sign up

Export Citation Format

Share Document