Artificial Intelligence in Utilitarian vs. Hedonic Contexts: The “Word-of-Machine” Effect

2020 ◽  
pp. 002224292095734
Author(s):  
Chiara Longoni ◽  
Luca Cian

Rapid development and adoption of AI, machine learning, and natural language processing applications challenge managers and policy makers to harness these transformative technologies. In this context, the authors provide evidence of a novel “word-of-machine” effect, the phenomenon by which utilitarian/hedonic attribute trade-offs determine preference for, or resistance to, AI-based recommendations compared with traditional word of mouth, or human-based recommendations. The word-of-machine effect stems from a lay belief that AI recommenders are more competent than human recommenders in the utilitarian realm and less competent than human recommenders in the hedonic realm. As a consequence, importance or salience of utilitarian attributes determine preference for AI recommenders over human ones, and importance or salience of hedonic attributes determine resistance to AI recommenders over human ones (Studies 1–4). The word-of machine effect is robust to attribute complexity, number of options considered, and transaction costs. The word-of-machine effect reverses for utilitarian goals if a recommendation needs matching to a person’s unique preferences (Study 5) and is eliminated in the case of human–AI hybrid decision making (i.e., augmented rather than artificial intelligence; Study 6). An intervention based on the consider-the-opposite protocol attenuates the word-of-machine effect (Studies 7a–b).

2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Author(s):  
Irene Li ◽  
Alexander R. Fabbri ◽  
Robert R. Tung ◽  
Dragomir R. Radev

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of “what should one learn first,”we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available 1. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.


2019 ◽  
Vol 75 (1) ◽  
pp. 314-318 ◽  
Author(s):  
Nigel L. Williams ◽  
Nicole Ferdinand ◽  
John Bustard

Purpose Advances in artificial intelligence (AI) natural language processing may see the emergence of algorithmic word of mouth (aWOM), content created and shared by automated tools. As AI tools improve, aWOM will increase in volume and sophistication, displacing eWOM as an influence on customer decision-making. The purpose of this paper is to provide an overview of the socio technological trends that have encouraged the evolution of informal infulence strategies from WOM to aWOM. Design/methodology/approach This paper examines the origins and path of development of influential customer communications from word of mouth (WOM) to electronic word of mouth (eWOM) and the emerging trend of aWOM. The growth of aWOM is theorized as a result of new developments in AI natural language processing tools along with autonomous distribution systems in the form of software robots and virtual assistants. Findings aWOM may become a dominant source of information for tourists, as it can support multimodal delivery of useful contextual information. Individuals, organizations and social media platforms will have to ensure that aWOM is developed and deployed responsibly and ethically. Practical implications aWOM may emerge as the dominant source of information for tourist decision-making, displacing WOM or eWOM. aWOM may also impact online opinion leaders, as they may be challenged by algorithmically generated content. aWOM tools may also generate content using sensors on personal devices, creating privacy and information security concerns if users did not give permission for such activities. Originality/value This paper is the first to theorize the emergence of aWOM as autonomous AI communication within the framework of unpaid influence or WOM. As customer engagement will increasingly occur in algorithmic environments that comprise person–machine interactions, aWOM will influence future tourism research and practice.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jay Carriere ◽  
Hareem Shafi ◽  
Katelyn Brehon ◽  
Kiran Pohar Manhas ◽  
Katie Churchill ◽  
...  

The COVID-19 pandemic has profoundly affected healthcare systems and healthcare delivery worldwide. Policy makers are utilizing social distancing and isolation policies to reduce the risk of transmission and spread of COVID-19, while the research, development, and testing of antiviral treatments and vaccines are ongoing. As part of these isolation policies, in-person healthcare delivery has been reduced, or eliminated, to avoid the risk of COVID-19 infection in high-risk and vulnerable populations, particularly those with comorbidities. Clinicians, occupational therapists, and physiotherapists have traditionally relied on in-person diagnosis and treatment of acute and chronic musculoskeletal (MSK) and neurological conditions and illnesses. The assessment and rehabilitation of persons with acute and chronic conditions has, therefore, been particularly impacted during the pandemic. This article presents a perspective on how Artificial Intelligence and Machine Learning (AI/ML) technologies, such as Natural Language Processing (NLP), can be used to assist with assessment and rehabilitation for acute and chronic conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Haoran Wang ◽  
Yue Zhang ◽  
Xiaosheng Yu

In recent years, with the rapid development of artificial intelligence, image caption has gradually attracted the attention of many researchers in the field of artificial intelligence and has become an interesting and arduous task. Image caption, automatically generating natural language descriptions according to the content observed in an image, is an important part of scene understanding, which combines the knowledge of computer vision and natural language processing. The application of image caption is extensive and significant, for example, the realization of human-computer interaction. This paper summarizes the related methods and focuses on the attention mechanism, which plays an important role in computer vision and is recently widely used in image caption generation tasks. Furthermore, the advantages and the shortcomings of these methods are discussed, providing the commonly used datasets and evaluation criteria in this field. Finally, this paper highlights some open challenges in the image caption task.


Author(s):  
Roy Rada

The techniques of artificial intelligence include knowledgebased, machine learning, and natural language processing techniques. The discipline of investing requires data identification, asset valuation, and risk management. Artificial intelligence techniques apply to many aspects of financial investing, and published work has shown an emphasis on the application of knowledge-based techniques for credit risk assessment and machine learning techniques for stock valuation. However, in the future, knowledge-based, machine learning, and natural language processing techniques will be integrated into systems that simultaneously address data identification, asset valuation, and risk management.


Author(s):  
Prakhar Mehrotra

The objective of this chapter is to discuss the integration of advancements made in the field of artificial intelligence into the existing business intelligence tools. Specifically, it discusses how the business intelligence tool can integrate time series analysis, supervised and unsupervised machine learning techniques and natural language processing in it and unlock deeper insights, make predictions, and execute strategic business action from within the tool itself. This chapter also provides a high-level overview of current state of the art AI techniques and provides examples in the realm of business intelligence. The eventual goal of this chapter is to leave readers thinking about what the future of business intelligence would look like and how enterprise can benefit by integrating AI in it.


2021 ◽  
Author(s):  
Priya B ◽  
Nandhini J.M ◽  
Gnanasekaran T

Natural Language processing (NLP) dealing with Artificial Intelligence concept is a subfield of Computer Science, enabling computers to understand and process human language. Natural Language Processing being a part of artificial intelligence provides understanding of human language by computers for the purpose of extracting information or insights and create meaningful response. It involves creating algorithms that transform text in to words labeling With the emerging advancements in Machine learning and Deep Learning, NLP can contributed a lot towards health sector, education, agriculture and so on. This paper summarizes the various aspects of NLP along with case studies associated with Health Sector for Voice Automated System, prediction of Diabetes Millets, Crop Detection technique in Agriculture Sector.


Author(s):  
Arkodeep Biswas and Ajay Kaushik

The objective of this paper is to build a Web Application based on Virtual voice and chat Assistant. The current study focuses on development of voice and text/chat bot specifically. It is specially being built for people who feel depressed and insists them to talk open mindedly which in turn pacifies them. As the name of the application suggests, App: An application to pacify people and make them as happy as a cat would be with his or her mother (the reason why a cat purrs). We will be using Dialog flow for the application design and Machine Learning as a part of Artificial Intelligence for Natural Language Processing (NLP), an easiest way to use Machine Learning libraries. At the back-end we will be using a database to store the communication history between the user and the bot. This application will only work on devices with Web operating system version-5.0 and above.


Sign in / Sign up

Export Citation Format

Share Document