Three-dimensional ultrastructure of the brain pericyte-endothelial interface

2021 ◽  
pp. 0271678X2110128
Author(s):  
Sharon Ornelas ◽  
Andrée-Anne Berthiaume ◽  
Stephanie K Bonney ◽  
Vanessa Coelho-Santos ◽  
Robert G Underly ◽  
...  

Pericytes and endothelial cells share membranous interdigitations called “peg-and-socket” interactions that facilitate their adhesion and biochemical crosstalk during vascular homeostasis. However, the morphology and distribution of these ultrastructures have remained elusive. Using a combination of 3D electron microscopy techniques, we examined peg-and-socket interactions in mouse brain capillaries. We found that pegs extending from pericytes to endothelial cells were morphologically diverse, exhibiting claw-like morphologies at the edge of the cell and bouton-shaped swellings away from the edge. Reciprocal endothelial pegs projecting into pericytes were less abundant and appeared as larger columnar protuberances. A large-scale 3D EM data set revealed enrichment of both pericyte and endothelial pegs around pericyte somata. The ratio of pericyte versus endothelial pegs was conserved among the pericytes examined, but total peg abundance was heterogeneous across cells. These data show considerable investment between pericytes and endothelial cells, and provide morphological evidence for pericyte somata as sites of enriched physical and biochemical interaction.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey A. Polilov ◽  
Anastasia A. Makarova ◽  
Song Pang ◽  
C. Shan Xu ◽  
Harald Hess

AbstractModern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.


2019 ◽  
Vol 219 (1) ◽  
pp. 129-147 ◽  
Author(s):  
M Lajaunie ◽  
J Gance ◽  
P Nevers ◽  
J-P Malet ◽  
C Bertrand ◽  
...  

SUMMARY This work presents a 3-D resistivity model of the Séchilienne unstable slope acquired with a network of portable resistivimeters in summer 2017. The instrumentation consisted in distributed measuring systems (IRIS Instruments FullWaver) to measure the spatial variations of electrical potential. 23 V-FullWaver receivers with two 50 m dipoles have been deployed over an area of circa 2 km2; the current was injected between a fixed remote electrode and a mobile electrode grounded successively at 30 locations. The data uncertainty has been evaluated in relation to the accuracy of electrodes positioning. The software package BERT (Boundless Electrical Resistivity Tomography) is used to invert the apparent resistivity and model the complex data set providing the first 3-D resistivity model of the slope. Stability tests and synthetic tests are realized to assess the interpretability of the inverted models. The 3-D resistivity model is interpreted up to a depth of 500 m; it allows identifying resistive and conductive anomalies related to the main geological and hydrogeological structures shaping the slope. The high fracturation of the rock in the most active zone of the landslide appears as a resistive anomaly where the highest resistivity values are located close to the faults. A major drain formed by a fault in the unaltered micaschist is identified through the discharge of a perched aquifer along the conductive zone producing an important conductive anomaly contrasting with the unaltered micaschist.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 496-518 ◽  
Author(s):  
R. W. Groom ◽  
R. C. Bailey

An outcropping hemispherical inhomogeneity embedded in a two‐dimensional (2-D) earth is used to model the effects of three‐dimensional (3-D) near‐surface electromagnetic (EM) “static” distortion. Analytical solutions are first derived for the galvanic electric and magnetic scattering operators of the heterogeneity. To represent the local distortion by 3-D structures of fields which were produced by a large‐scale 2-D structure, these 3-D scattering operators are applied to 2-D electric and magnetic fields derived by numerical modeling to synthesize an MT data set. Synthetic noise is also included in the data. These synthetic data are used to study the parameters recovered by several published methods for decomposing or parameterizing the measured MT impedance tensor. The stability of these parameters in the presence of noise is also examined. The parameterizations studied include the conventional 2-D parameterization (Swift, 1967), Eggers’s (1982) and Spitz’s (1985) eigenstate formulations, LaTorraca et al.’s (1986) SVD decomposition, and the Groom and Bailey (1989) method designed specifically for 3-D galvanic electric scattering. The relationships between the impedance or eigenvalue estimates of each method and the true regional impedances are examined, as are the azimuthal (e.g., regional 2-D strike, eigenvector orientation and local strike) and ellipticity parameters. The 3-D structure causes the conventional 2-D estimates of impedances to be site‐dependent mixtures of the regional impedance responses, with the strike estimate being strongly determined by the orientation of the local current. For strong 3-D electric scattering, the local current polarization azimuth is mainly determined by the local 3-D scattering rather than the regional currents. There are strong similarities among the 2-D rotation estimates of impedance and the eigenvalue estimates of impedance both by Eggers’s and Spitz’s first parameterization as well as the characteristic values of LaTorraca et al. There are striking similarities among the conventional estimate of strike, the orientations given by the Eggers’s, Spitz’s (Q), and LaTorraca et al.’s decompositions, as well as the estimate of local current polarization azimuth given by Groom and Bailey. It was found that one of the ellipticities of Eggers, LaTorraca et al., and Spitz is identically zero for all sites and all periods, indicating that one eigenvalue or characteristic value is linearly polarized. There is strong evidence that this eigenvalue is related to the local current. For these three methods, the other ellipticity differs from zero only when there are significant differences in the phases of the regional 2-D impedances (i.e., strong 2-D inductive effects), implying the second ellipticity indicates a multidimensional inductive response. Spitz’s second parameterization (U), and the Groom and Bailey decomposition, were able to recover information regarding the actual regional 2-D strike and the separate character of the 2-D regional impedances. Unconstrained, both methods can suffer from noise in their ability to resolve structural information especially when the current distortion causes the impedance tensor to be approximately singular. The method of Groom and Bailey, designed specifically for quantifying the fit of the measured tensors to the physics of the parameterization, constraining a model, and resolving parameters, can recover much of the information in the two regional impedances and some information about the local structure.


2021 ◽  
Author(s):  
Christian Burmeister ◽  
Paul Wintersteller ◽  
Martin Meschede

<p>The active volcanic arcs of the Scotia Plate and Caribbean Plate are two prominent features along the otherwise passive margins of the Atlantic Ocean, where subduction processes of oceanic crust is verifiable. Both arcs have been, and continue to be, important oceanic gateways during their formation. Trapped between the large continental plates of North- and South America, as well as Antarctica, the two significantly smaller oceanic plates show striking similarities in size, shape, plate margins and morphology, although formed at different times and locations during Earth’s history.</p><p>Structural analyses of the seafloor are based on bathymetric datasets by multibeam-echosounders (MBES), including data of the Global Multi Resolution Topography (GMRT), Alfred Wegener Institute (AWI), MARUM/Uni-Bremen, Geomar/Uni-Kiel, Uni-Hamburg and the British Antarctic Survey (BAS). Bathymetric data were processed to create maps of ocean floor morphology with resolution of 150-250 meters in accuracy. The Benthic Terrain Modeler 3.0 (BTM), amongst other GIS based tools, was utilized to analyse the geomorphometry of both plates. Furthermore, we used the bathymetric datasets for three-dimensional modelling of the seafloor to examine large-scale-structures in more detail.</p><p>The modelling of ship-based bathymetric datasets, in combination with the GEBCO 2014 global 30 arc-second interval grid, included in the GMRT bathymetric database, delivered detailed bathymetric maps of the study area. With the help of the fine- and broad-scale bathymetric position index (BPI), comparable to the topographic position index (Weiss, 2001), we present the first detailed interpretation of combined bathymetric datasets of the Scotia Sea, including the entire Scotia Plate and adjacent areas, such as the East Scotia Plate. We identified typical morphological features of the abyss, based on the determination of steep and broad slopes, ridges, boulders, flat plains or flat ridge tops and depressions in various scales. Additional data analyses of gravimetric and magnetic properties of the crust should help to understand the plate tectonic history of both areas in more detail.</p><p><br>References: <br>Ryan, W. B. F; Carbotte, S.M.; Coplan, J.; O'Hara, S.; Melkonian, A.; Arko, R.; Weissel, R.A.; Ferrini, V.; Goodwillie, A.; Nitsche, F.; Bonczkowski, J. and Zemsky, R. (2009): Global Multi-Resolution Topography (GMRT) synthesis data set, Geochem. Geophys. Geosyst., 10, Q03014, doi:10.1029/2008GC002332.</p><p>Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D.J. (2018): Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. doi: 10.3390/geosciences8030094</p><p>Weiss, A. D. (2001): Topographic Positions and Landforms Analysis (Conference Poster). Proceedings of the 21st Annual ESRI User Conference. San Diego, CA, July 9-13.</p>


1996 ◽  
Vol 86 (3) ◽  
pp. 788-796 ◽  
Author(s):  
Gideon P. Smith ◽  
Göran Ekström

Abstract A comparison is made between seismic event locations derived from standard spherically symmetric Earth models (JB, PREM, IASP91) and a recent Earth model (S&P12/WM13) that incorporates large-scale lateral heterogeneity of P- and S-wave velocities in the mantle. Events with known hypocentral coordinates are located in the different Earth models using standard methods. Two sets of events are considered: a data set of 26 explosions, including primarily nuclear weapons test explosions and peaceful nuclear explosions in the United States and former USSR; and a published data set of 82 well-located earthquakes with a more even global distribution. IASP91 and PREM are shown to offer similar errors in event location and origin time estimates with respect to the JB model. The three-dimensional (3D) model S&P12/WM13 offers improvement in event locations over all three one-dimensional (1D) models with, or without, station corrections. For the explosion events, the average mislocation distance is reduced by approximately 40%; for the earthquakes, the improvements are smaller. Corrections for crustal thickness beneath source and receiver are found to be of similar magnitude to the mantle corrections, but use of station corrections together with the three-dimensional mantle model provide the best locations.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
John C. Bramley ◽  
Coyne G. Drummond ◽  
Nicholas J. Lennemann ◽  
Charles A. Good ◽  
Kwang Sik Kim ◽  
...  

ABSTRACT Neurotropic viral infections are significant sources of global morbidity and mortality. The blood-brain barrier (BBB) is composed in part of a layer of microvascular endothelial cells and functions to restrict viral access to the brain. In vitro models that recapitulate many of the properties of the human BBB endothelium are lacking, particularly with respect to the unique cellular and immunological mechanisms by which these cells restrict viral infections of the brain. Here, we developed a three-dimensional cell culture model that recapitulates many of the morphological and functional properties of the BBB microvasculature and apply this model to the study of RNA virus infections. The model we describe can therefore be used to study a variety of aspects of BBB physiology, including the mechanisms by which viruses might access the CNS, and could be used for the development and screening of antiviral therapeutics to limit this important step in viral pathogenesis. The blood-brain barrier (BBB) comprises the foremost protective barrier in the brain and is composed in part of a layer of microvascular endothelial cells that line the capillaries surrounding the brain. Here, we describe a human three-dimensional (3-D) cell-based model of the BBB microvascular endothelium that recapitulates properties of these cells in vivo, including physiologically relevant transcriptional profiles, the capacity to induce potent antimicrobial innate immune signaling, and the ability to resist infection by diverse RNA viruses, including members of the enterovirus (coxsackievirus B, echovirus 11, enterovirus 71, poliovirus) and flavivirus (dengue virus, Zika virus [ZIKV]) families. We show that disruption of apical tight junctions by proinflammatory cytokine tumor necrosis factor alpha (TNF-α) sensitizes 3-D-cultured BBB cells to ZIKV infection and that 3-D derived BBB cells can be used to model the transmigration of ZIKV-infected monocytes across the endothelial barrier to access underlying astrocytes. Taken together, our findings show that human BBB microvascular endothelial cells cultured in 3-D can be used to model the mechanisms by which RNA viruses access the central nervous system (CNS), which could be used for the development and screening of therapeutics to limit this event. IMPORTANCE Neurotropic viral infections are significant sources of global morbidity and mortality. The blood-brain barrier (BBB) is composed in part of a layer of microvascular endothelial cells and functions to restrict viral access to the brain. In vitro models that recapitulate many of the properties of the human BBB endothelium are lacking, particularly with respect to the unique cellular and immunological mechanisms by which these cells restrict viral infections of the brain. Here, we developed a three-dimensional cell culture model that recapitulates many of the morphological and functional properties of the BBB microvasculature and apply this model to the study of RNA virus infections. The model we describe can therefore be used to study a variety of aspects of BBB physiology, including the mechanisms by which viruses might access the CNS, and could be used for the development and screening of antiviral therapeutics to limit this important step in viral pathogenesis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruihao Lin ◽  
Junzhe Xu ◽  
Jianhua Zhang

Purpose Large-scale and precise three-dimensional (3D) map play an important role in autonomous driving and robot positioning. However, it is difficult to get accurate poses for mapping. On one hand, the global positioning system (GPS) data are not always reliable owing to multipath effect and poor satellite visibility in many urban environments. In another hand, the LiDAR-based odometry has accumulative errors. This paper aims to propose a novel simultaneous localization and mapping (SLAM) system to obtain large-scale and precise 3D map. Design/methodology/approach The proposed SLAM system optimally integrates the GPS data and a LiDAR odometry. In this system, two core algorithms are developed. To effectively verify reliability of the GPS data, VGL (the abbreviation of Verify GPS data with LiDAR data) algorithm is proposed and the points from LiDAR are used by the algorithm. To obtain accurate poses in GPS-denied areas, this paper proposes EG-LOAM algorithm, a LiDAR odometry with local optimization strategy to eliminate the accumulative errors by means of reliable GPS data. Findings On the KITTI data set and the customized outdoor data set, the system is able to generate high-precision 3D map in both GPS-denied areas and areas covered by GPS. Meanwhile, the VGL algorithm is proved to be able to verify reliability of the GPS data with confidence and the EG-LOAM outperform the state-of-the-art baselines. Originality/value A novel SLAM system is proposed to obtain large-scale and precise 3D map. To improve the robustness of the system, the VGL algorithm and the EG-LOAM are designed. The whole system as well as the two algorithms have a satisfactory performance in experiments.


2021 ◽  
Vol 87 (7) ◽  
pp. 479-484
Author(s):  
Yu Hou ◽  
Ruifeng Zhai ◽  
Xueyan Li ◽  
Junfeng Song ◽  
Xuehan Ma ◽  
...  

Three-dimensional reconstruction from a single image has excellent future prospects. The use of neural networks for three-dimensional reconstruction has achieved remarkable results. Most of the current point-cloud-based three-dimensional reconstruction networks are trained using nonreal data sets and do not have good generalizability. Based on the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago ()data set of large-scale scenes, this article proposes a method for processing real data sets. The data set produced in this work can better train our network model and realize point cloud reconstruction based on a single picture of the real world. Finally, the constructed point cloud data correspond well to the corresponding three-dimensional shapes, and to a certain extent, the disadvantage of the uneven distribution of the point cloud data obtained by light detection and ranging scanning is overcome using the proposed method.


1999 ◽  
Vol 122 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Woong-Chul Choi ◽  
Yann G. Guezennec

The work described in this paper focuses on experiments to quantify the initial fuel mixing and gross fuel distribution in the cylinder during the intake stroke and its relationship to the large-scale convective flow field. The experiments were carried out in a water analog engine simulation rig, and, hence, limited to the intake stroke. The same engine head configuration was used for the three-dimensional PTV flow field and the PLIF fuel concentration measurements. High-speed CCD cameras were used to record the time evolution of the dye convection and mixing with a 1/4 deg of crank angle resolution (and were also used for the three-dimensional PTV measurements). The captured sequences of images were digitally processed to correct for background light non-uniformity and other spurious effects. The results are finely resolved evolution of the dye concentration maps in the center tumble plane. The three-dimensional PTV measurements show that the flow is characterized by a strong tumble, as well as pairs of cross-tumble, counter-rotating eddies. The results clearly show the advection of a fuel-rich zone along the wall opposite to the intake valves and later along the piston crown. It also shows that strong out-of-plane motions further contribute to the cross-stream mixing to result in a relatively uniform concentration at BDC, albeit slightly stratified by the lean fluid entering the cylinder later in the intake stroke. In addition to obtaining phase-averaged concentration maps at various crank angles throughout the intake stroke, the same data set is processed for a large number of cycle to extract spatial statistics of the cycle-to-cycle variability and spatial non-uniformity of the concentration maps. The combination of the three-dimensional PTV and PLIF measurements provides a very detailed understanding of the advective mixing properties of the intake-generated flow field. [S0742-4795(00)00103-4]


2012 ◽  
Vol 8 (S289) ◽  
pp. 235-235
Author(s):  
David Valls-Gabaud

AbstractWith the advent of precision cosmology, where distances out to redshifts z < 0.6 can be measured to 2% precision on the basis of baryon acoustic oscillations, it appears essential to establish an accurate calibration of the primary and secondary indicators of the cosmological distance ladder. Here we review recent attempts at anchoring M31 very accurately using three independent methods, and discuss in detail the systematics that affect each. Two double-lined eclipsing binaries yield a distance to M31 which is precise to 4%. New Bayesian methods have been applied to determine the tip of the red-giant branch, even in sparsely populated colour–magnitude diagrams, and provide unique insights in the context of a precise three-dimensional distribution of the satellites in the M31 system. Over 2500 Cepheids have been identified in large-scale multi-colour surveys of M31, the largest homogeneous data set thus far obtained for any galaxy. A subset of 68 with periods longer than 10 days have been observed with the Wide-Field Camera 3 on board the Hubble Space Telescope, yielding the tightest-ever near-infrared period–luminosity relation, with a mean distance error of 1%. Combined with other measurements, the distance to M31 is now measured with a precision of 3%. Forthcoming improvements, and their implications, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document