Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair

2018 ◽  
Vol 32 (10) ◽  
pp. 1421-1434 ◽  
Author(s):  
Hongzhang Guo ◽  
Changde Wang ◽  
Jixiang Wang ◽  
Yufang He

This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups. The goats were treated with autogenous cancellous bone, lithium-incorporated deproteinized bovine bone, and deproteinized bovine bone. Animals were evaluated using radiological analysis including X-ray, computed tomography, and Micro-CT; histological methods involving hematoxylin–eosin dyeing, Masson dyeing, and immunofluorescence detection at 4 and 12 weeks after surgery were carried out. According to the results, lithium-incorporated deproteinized bovine bone produced nano-structured surface layer. The lithium-incorporated deproteinized bovine bone could promote the osteoblast proliferation and increase the calcium deposition. In vivo studies, radiographic results revealed that lithium-incorporated deproteinized bovine bone scaffolds provided better performance in terms of mean gray values of X films, mean pixel values of computed tomography films, and bone volume and trabecular thickness of micro-computed tomography pictures when compared with the deproteinized bovine bone group. In addition, histological analysis showed that the lithium-incorporated deproteinized bovine bone group also significantly achieved larger new bone formation area. At the same time, when the expression of osteogenic factors in vivo was evaluated, runt-related transcription factor 2 (Runx2) and collagen type one (Col-1) were expressed more in lithium-incorporated deproteinized bovine bone group than those in deproteinized bovine bone group. However, the bone defect repair effect using autograft is still a little better than that of lithium-incorporated deproteinized bovine bone substitute based on our results. In conclusion, surface lithium-incorporated deproteinized bovine bone achieved improvement of osteogenesis effect and could enhance the new bone formation in critical-sized bone defects.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karen E. Beenken ◽  
Mara J. Campbell ◽  
Aura M. Ramirez ◽  
Karrar Alghazali ◽  
Christopher M. Walker ◽  
...  

AbstractWe previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.


RSC Advances ◽  
2020 ◽  
Vol 10 (13) ◽  
pp. 7708-7717 ◽  
Author(s):  
Rong Zhou ◽  
Hai-Jian Ni ◽  
Jin-Hui Peng ◽  
Ning Liu ◽  
Shu Chen ◽  
...  

Calcium phosphate modified tantalum scaffolds displayed high performance on mineralization, sustained drug release and in vivo bone defect repair.


Author(s):  
Bin Tian ◽  
Na Wang ◽  
Qingsong Jiang ◽  
Lijiao Tian ◽  
Lei Hu ◽  
...  

AbstractTissue engineering is a promising strategy for bone tissue defect reconstruction. Immunogenic reaction, which was induced by scaffolds degradation or contaminating microorganism, influence cellular activity, compromise the efficiency of tissue engineering, or eventually lead to the failure of regeneration. Inhibiting excessive immune response through modulating scaffold is critical important to promote tissue regeneration. Our previous study showed that ε-poly-L-lysine (EPL)-coated nanoscale polycaprolactone/hydroxyapatite (EPL/PCL/HA) composite scaffold has enhanced antibacterial and osteogenic properties in vitro. However, the bone defect repair function and immunogenic reaction of EPL/PCL/HA scaffolds in vivo remains unclear. In the present study, three nanoscale scaffolds (EPL/PCL/HA, PCL and PCL/HA) were transplanted into rabbit paraspinal muscle pouches, and T helper type 1 (Th1), T helper type 2 (Th2), T helper type 17 (Th17), and macrophage infiltration were analyzed after 1 week and 2 weeks to detect their immunogenic reaction. Then, the different scaffolds were transplanted into rabbit calvarial bone defect to compare the bone defect repair capacities. The results showed that EPL/PCL/HA composite scaffolds decreased pro-inflammatory Th1, Th17, and type I macrophage infiltration from 1 to 2 weeks, and increased anti-inflammatory Th2 infiltration into the regenerated area at 2 weeks in vivo, when compared to PCL and PCL/HA. In addition, EPL/PCL/HA showed an enhanced bone repair capacity compared to PCL and PCL/HA when transplanted into rabbit calvarial bone defects at both 4 and 8 weeks. Hence, our results suggest that EPL could regulate the immunogenic reaction and promote bone defect repair function of PCL/HA, which is a promising agent for tissue engineering scaffold modulation.


2021 ◽  
Vol 9 (F) ◽  
pp. 470-473
Author(s):  
Hanif Andhika Wardhana ◽  
Mujaddid Idulhaq ◽  
Rhyan Darma Saputra ◽  
Rieva Ermawan ◽  
Musa Fasa Roshada

Background : The use of Bone Graft in the management of Bone Defect is a challenge in the world of orthopedics. Recently, eggshell containing hydroxyapatite has become a new hope in the use of an economical and efficient bone graft in the treatment of bone defects. The aim of this systematic review was to explore the available literature on the clinical performance of eggshells as bone grafts in guided bone regeneration. Method : Two databases (PubMed and Cochrane) were searched from January 2010 to September 2020. Clinical trials using eggshells as bone grafts were included in the review. Animal and in vivo studies were excluded from the review. Results : A total of 202 studies were taken, then screened and 15 studies finally included. Clinical and radiological evaluations show complete recovery after the procedure. Comparison with synthetic hydroxyapatite shows similar healing characteristics. Conclusion : Eggshell compared to bovine showed no difference in bone healing. Within the limitations of the included studies, eggshells can be used safely and efficiently in integrated bone regeneration procedures. Keywords: Bone tissue regeneration; eggshell; bovine; bone defect; bone graft  


Sign in / Sign up

Export Citation Format

Share Document