Influence of gelatin and collagen incorporation on peroxidase-mediated injectable pectin-based hydrogel and bioactivity of fibroblasts

2020 ◽  
pp. 088532822097760
Author(s):  
Mehri Ahmadian ◽  
Ali Baradar Khoshfetrat ◽  
Neda Khatami ◽  
Fatemeh Morshedloo ◽  
Reza Rahbarghazi ◽  
...  

Pectin has recently attracted increasing attention for biomedical and pharmaceutical applications. Due to the lack of adhesion molecules in polysaccharides, phenolic hydroxyl conjugated gelatin was added to enzymatically-gellable peroxidase-modified pectin derivative and compared with phenolic hydroxyl -pectin/collagen. Both pectin and gelatin were modified by tyramine hydrochloride in the presence of EDC/NHS. The phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin, phenolic hydroxyl-pectin/collagen, and phenolic hydroxyl -pectin hydrogels were prepared using horseradish peroxidase and hydrogen peroxide. The hydrogels were characterized by gelation time analysis. Morphology, enzymatic biodegradation, mechanical and swelling properties as well as water vapor transmission rate were also evaluated. Fibroblasts were cultured for 7 days, and the survival rate was evaluated using conventional MTT assay. Hydrogels composed of Ph-pectin/Ph-gelatin showed decreased biodegradation rate, and WVTR and further improved mechanical performance in comparison with other groups. Both phenolic hydroxyl -pectin/collagen and phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin hydrogels exhibited porous structures. The hydrogels composed of collagen promoted cell survival rate 1.4 and 3.5 times compared to phenolic hydroxyl -gelatin and phenolic hydroxyl -pectin based hydrogels at the end of 7 days, respectively (p < 0.001). The study demonstrated the potential of enzymatically-gellable pectin-based hydrogels as cost-effective frameworks for use in tissue engineering applications.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański ◽  
Ulrich Krupp ◽  
...  

AbstractAdvanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 836 ◽  
Author(s):  
Chunhui Liu ◽  
Xi Liao ◽  
Weili Shao ◽  
Fan Liu ◽  
Bin Ding ◽  
...  

Waterproof-breathable (WB) materials with outstanding waterproofness, breathability, and mechanical performance are critical in diverse consumer applications. Electrospun nanofibrous membranes with thin fiber diameters, small pore sizes, and high porosity have attracted significant attention in the WB fabric field. Hot-press treatment technology can induce the formation of inter-fiber fusion structures and hence improve the waterproofness and mechanical performance. By combining electrospinning and hot-press treatment technology, polyurethane/fluorinated polyurethane/thermoplastic polyurethane/alkylsilane-functionalized graphene (PU/FPU/TPU/FG) nanofiber WB fabric was fabricated. Subsequently, the morphologies, porous structure, hydrostatic pressure, water vapor transmission rate (WVTR), and stress–strain behavior of the nanofiber WB fabric were systematically investigated. The introduction of the hydrophobic FG sheet structure and the formation of the inter-fiber fusion structure greatly improved not only the waterproofness but also the mechanical performance of the nanofiber WB fabric. The optimized PU/FPU/TPU-50/FG-1.5 WB fabric exhibited an excellent comprehensive performance: a high hydrostatic pressure of 80.4 kPa, a modest WVTR of 7.6 kg m−2 d−1, and a robust tensile stress of 127.59 MPa, which could be used to achieve various applications. This work not only highlights the preparation of materials, but also provides a high-performance nanofiber WB fabric with huge potential application prospects in various fields.


2012 ◽  
Vol 102 (6) ◽  
pp. 567-574 ◽  
Author(s):  
Muqing Zhang ◽  
Charles A. Powell ◽  
Ying Guo ◽  
Melissa S. Doud ◽  
Yongping Duan

Huanglongbing (HLB) is the most devastating disease of citrus. The global citrus industry is in urgent need of effective chemical treatments for HLB control because of its rapid spreading worldwide. Due to the fastidious nature of the pathogens, and the poor permissibility of citrus leaf surfaces, effective screening of chemicals for the HLB control can be challenging. In this study, we developed a graft-based chemotherapy method to rapidly screen potential HLB-controlling chemical compounds. In addition, we improved transmission efficiency by using the best HLB-affected scion–rootstock combination, and demonstrated the HLB bacterial titer was the critical factor in transmission. The HLB-affected lemon scions had a high titer of HLB bacterium, survival rate (83.3%), and pathogen transmission rate (59.9%). Trifoliate, a widely used commercial rootstock, had the highest survival rate (>70.0%) compared with grapefruit (52.6%) and sour orange (50.4%). Using this method, we confirmed a mixture of penicillin and streptomycin was the most effective compounds in eliminating the HLB bacterium from the HLB-affected scions, and in successfully rescuing severely HLB-affected citrus germplasms. These findings are useful not only for chemical treatments but also for graft-based transmission studies in HLB and other Liberibacter diseases.


Author(s):  
Bilim Atli-Veltin

In the small scale LNG infrastructure, composite materials are scarcely employed. Potentially, cost effective solutions for LNG applications could be developed thanks to the advantages of composite materials over metals such as weight savings, design flexibility and recyclability. The research presented in this paper focuses on the mechanical performance of fully recyclable, thermoplastic Polypropylene (PP) composite tapes at cryogenic LNG temperatures. Quasi-static tensile tests performed on [±45] laminates made of plain woven plies of PURE® show that at −196°C the behavior is bilinear with the failure strain of 6.5% and failure stress of 37 MPa. Such non-brittle failure behavior of PP is desirable for cryogenic applications. The other results presented in the paper contains [0/90] laminate results and the interlaminar shear strength characteristics at room and cryogenic temperatures.


2018 ◽  
Vol 2 ◽  
pp. 145-154 ◽  
Author(s):  
Viviane Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano Jr ◽  
Vanderley Moacyr John

Vegetable fibers produced from agroindustrial resources in the macro, micro and nanometric scales have been used as reinforcement in cementitious materials. The cellulosic pulp, besides being used as the reinforcing element, is also the processing fiber that is responsible for the filtration system in the Hatcheck method. On the other hand, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In the hybrid reinforcement, with micro and nanofibers, the cellulose performs bonding elements with the matrix and acts as stress transfer bridges in the micro and nano-cracking network with the corresponding strengthening and toughening of the cementitious composite. Some strategies are studied to mitigate the degradation of the vegetable fibers used in cost-effective and non-conventional fiber cement, as well as to reach a sustainable fiber cement production. As a practical example, the accelerated carbonation curing at early age is a developing technology to increase the durability of composite materials: it decreases porosity, promotes a higher density in the interface generating a good fiber–matrix adhesion and a better mechanical behavior. Thus, the vegetable fibers are potentially applicable to produce high mechanical performance and sustainable cementitious materials for use in the Civil Construction.


Author(s):  
Adriana Paula David

. The main objective of this work was to determine the influence of formulation on the stability of bread dough during frozen storage. Bread doughs containing gluten and trehalose were submitted to mechanical freezing at -30° C and stored frozen for 45 days. Two types of instant yeast were tested: (A) for sweet doughs and (B) for savoury doughs. Specific volume was significantly affected by the yeast type, type A showing better effect than type B. Frozen storage of the doughs negatively affected the specific volume, crumb hardness and technological score of the bread. The addition of 5% trehalose had a beneficial effect on the cell survival rate for both the yeasts.


2020 ◽  
Vol 23 (3) ◽  
pp. 198-203
Author(s):  
Wei Tian ◽  
Yongmei Qian ◽  
Ruozhu Wang ◽  
Yiming Wang

Glue-laminated cornstalk scrimber is a novel composite to substitute timber. This composite can be prepared in three steps: selecting flawless cornstalks, laying them parallel to grain, and gluing the scrimbers under high pressure. Compared with ordinary timber, glue-laminated cornstalk scrimber excels in the resistance to water, damping, insect, and fire. It is therefore widely recognized as novel eco-friendly and cost- effective composite with great potential in the building industry. The tensile strength of glue-laminated cornstalk scrimber mainly depends on the parallel-to-grain strength of its fibers. The mechanical performance parallel to grain directly determines that of this composite. Hence, this paper carries out experimental analysis on the Young’s moduli and parallel-to-grain tensile strengths of cornstalk scrimber and glue-laminated cornstalk scrimber. The results show that the load-strain curve of glue-laminated cornstalk scrimber basically changed linearly parallel to grain, and the material exhibited stable Young’s modulus and good strength; the glue-laminated cornstalk scrimber had a slightly higher tensile strength than cornstalk scrimber, and could thus replace timber as a building material.


2019 ◽  
Vol 373 ◽  
pp. 355-364 ◽  
Author(s):  
Kiesar Sideeq Bhat ◽  
Umesh T. Nakate ◽  
Jin-Young Yoo ◽  
Yousheng Wang ◽  
Tahmineh Mahmoudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document