Characterization of mechanical behavior in repaired FC300 using directly deposited AISI-P21 and AISI-H13 metal powders
Remanufacturing is a promising technique for reducing manufacturing costs and material usage. This work presents a method for repairing casting parts using an additive metal-layer deposition process. To determine characteristics and mechanical properties of parts repaired using the proposed additive metal-layer-deposition-based method, tensile specimens were designed with grooves measuring 1 mm and 3 mm in depth. Two specific metal powders, AISI-P21 (SCM440) and AISI-H13 (SKD61), were melted using a highly focused laser, and molten droplets were subsequently built up layer-by-layer to fill-in the grooves. Mechanical and metallurgical characteristics of repaired parts were investigated via tensile and hardness tests and microstructural analyses. Experimental results demonstrate that the ultimate strength of specimens repaired using the proposed additive metal-layer deposition method measured approximately 9% lower compared with that of FC300. However, the mechanical strength of additive metal-layer deposition specimen was increased about 22% compared with that of welded specimen. Through this work, we can make a conclusion that the additive metal-layer deposition technique is well-suited for the repair and reproduction of castings.