Realization of ductile regime machining in micro-milling SiCp/Al composites and selection of cutting parameters
SiCp/Al composites are widely used owing to their outstanding performance. However, due to the existence of brittle SiC, surface defects caused by particle fracture damage the surface quality severely. Meanwhile, due to small cutting parameters during the micro-milling process, especially the undeformed chip thickness, which is mainly determined by the feed per tooth, the size effect of matrix also damages the surface quality. In this study, a method by realizing the ductile regime machining of the particle and diverting away the defects of particles and matrix is proposed to select the cutting parameters and improve the surface quality in micro-milling SiCp/Al composites. Suitable range of values of the feed per tooth for side milling and end milling are obtained by this method and validated by micro-experiments. The results show that the size effect of Al and removal ways of the SiC particles affect the machined surface simultaneously. By using suitable feed per tooth, weak size effect of Al and most of the particles’ ductile regime removing can be realized, leading to the generation of the best surface. Additionally, the machining effects of this method are more prominent in end milling than in side milling.