Cutting Parameters Impacting on Tool Wear in Micro End-milling of Tool Steel

Author(s):  
Cínthia Soares Manso ◽  
Cleiton Lazaro Fazolo de Assis ◽  
Luciana Wasnievski da Silva de Luca Ramos ◽  
Erik Gustavo Del Conte

In micro milling process, the quick wear and premature breakage of tools configure a problem that affects not only the process costs but also the manufacturing quality. This work investigates the influence of the cutting parameters on tool wear and surface roughness in a dry machining of a tool steel H13 workpiece (X40CrMoV5-1). Spindle speed was kept constant (27200 rpm) and two feeds per tooth were applied (1.5 and 3.0 µm) as depth of cut (25 and 30 µm), and variating cut length as well. The wear of the tool top area, tool diameter and nose radius were monitored during micro milling tests. Roughness was evaluated by using a Laser Confocal Microscope. The lower level of feed per tooth and depth of cut showed lower roughness, but a higher tool wear. A balance between cutting parameters and cutting length must be considered to ensure micromachining without severe tool wear and preserve microchannel features along its machined surface.

2020 ◽  
Vol 896 ◽  
pp. 293-298
Author(s):  
Nicolae Craciunoiu ◽  
Emil Nicusor Patru ◽  
Adrian Sorin Rosca ◽  
Dumitru Panduru ◽  
Marin Bica

In order to control the temperature during milling process of aluminum alloys and keeping as minimum as possible, the choice of the cutting parameters and their optimization is very important, both for the tool wear but also for the surface quality of machined surface. The main purpose of this paper is to find the optimum values of the milling parameters (rotational speed and depth of cut) so that the minimum value for the temperature to be obtained. Using adequate experimental conditions with contact measurements techniques (thermocouple K-type) carried out on the some types of aluminum alloys and the appropriate statistical instruments, the most influencing cutting parameters and their values on the cutting temperature can be found. The results are presented both analytical and graphical.


2013 ◽  
Vol 770 ◽  
pp. 370-375
Author(s):  
Xiao Xiao Chen ◽  
Jun Zhao ◽  
Yong Wang Dong ◽  
Shuai Liu ◽  
Jia Bang Zhao

This paper investigated the surface generated by single factor experiment under multi-axis finish milling condition, and the effects of cutting parameters on surface textures, 2D and 3D surface topographies and surface roughness characteristics were analyzed. Surface features evaluation indicators of Ra, Rq, Rt, surface heights histogram, maximum valley depth and maximum peak height corresponding to various cutting parameters were presented and discussed. The machining marks are closely related with tool orientation angles. The orderly distributions of concave and convex patterns on the machined surface are produced by the special cutting orientation of the cutting edges. The feed per tooth, spindle speed, tilt angle, and lead angle apparently affect surface roughness, while depth of cut and radial width of cut have no obvious effects on the surface roughness when the two parameters values vary in a small range.


2010 ◽  
Vol 126-128 ◽  
pp. 773-778
Author(s):  
Yung Tien Liu ◽  
Neng Hsin Chiu ◽  
Yen Chun Lin ◽  
Chih Liang Lai ◽  
Yu Fu Lin ◽  
...  

Micro ball-end milling process features the ability of machining complex surfaces, precision machining accuracy, and excellent machined surface roughness. However, because the diameter of a micro milling tool is very small, a rapid progress of tool wear or even tool breakage usually happens when machining a high-strength hardened mold steel using improper machining parameters. As a result, the machining cost would rise due to the quality defect in machined workpiece. In this study, to investigate how the machining parameters affect the cutting behaviors, a series of experiments using micro CBN ball-end mills with a diameter of 0.5 mm were performed to cut the SKD11 mold steel with hardness of HRC 61. The machining parameters are selected as the feeding speed (f) being 840, 960 and 1,080 mm/min, depth of cut (ap) being 30, 45, 60 μm, and spindle speed (vs) being fixed as 30,000 rpm. According to the experimental results, the measured three-axis cutting forces, flank wears, and surface roughness of machined workpiece are highly related to the cutting length. It is expected that the measured results can be used to construct a performance function of a micro ball-end tool. With referring to the performance function, the tool life can be well expected, and thus a progress in machining efficiency without tool failure can be achieved.


1970 ◽  
Vol 3 (2) ◽  
Author(s):  
A.K.M.N. AMIN, M. IMRAN AND M. ARIF

Stainless steels are a group of difficult to machine work materials. The difficulty in machining stainless steels is manifested in high contact length and stresses, formation of serrated chips and development of chatter resulting in high tool wear rates and poor machined surface finish. The paper focuses on the performance of TiN coated-carbide inserts in machining stainless steel specimens in end milling operation performed on vertical machining centre (VMC). The performance of the tool is evaluated from the point of view of its wear intensity, mechanism of failure and generation and effect of chatter on tool wear and vice versa. The investigations were aimed at determining the effect of cutting parameters, specifically cutting speed, feed and depth of cut, on chatter amplitude, tool wear rate, mechanism of tool wear and using these data and machined surface roughness values from previous work to come up with recommended values of cutting parameters for semi-finish and finish end milling operation of stainless steel work materials. For recording vibration signals a dual channel portable signal analyzers was used and the signals were analyzed using Pulse Multi-analyzer version 4.2 software. Tool wear was measured using an optical microscope with digital readout capabilities along 3 axes. The tool wear mechanisms were studied under a scanning electron microscope (SEM). Results of the investigation show that acceleration amplitudes generally increase with cutting speed and the magnitude of tool flank wears. It has been also found that an increase in feed and depth of cut leads to higher acceleration amplitudes. The most common wear mechanisms observed during machining of stainless steel are attrition, micro and macro chipping of the tool at lower cutting speeds, and diffusion and mechanical failures due to intensive chatter at higher speeds. It has been also established that stable cutting speeds with relatively low tool wear intensity and satisfactory machined surface finish can be achieved through proper selection of cutting parameters. A table of recommended cutting conditions has been developed for almost chatter free machining with low tool wear intensity and satisfactory surface finish. Key Words: Vertical Machining Centre, Machinability, Chatter, Cutting, Tool life.


Author(s):  
Barnabás Zoltán Balázs ◽  
Márton Takács

Micro-milling is one of the most essential technologies to produce micro components, but due to the size effect, it has many special characteristics and challenges. The process can be characterised by strong vibrations, relatively large run-out and tool deformation, which directly affects the quality of the machined surface. This paper deals with a detailed investigation of the influence of cutting parameters on surface roughness and on the special characteristics of micro-milled surfaces. Several systematic series of experiments were carried out and analysed in detail. A five-axis micromachining centre and a two fluted, coated carbide micro-milling tool with a diameter of 500 µm were used for the tests. The experiments were conducted on AISI H13 hot-work tool steel and Böhler M303 martensitic corrosion resistance steel with a hardness of 50 HRC in order to gain relevant information of machining characteristics of potential materials of micro-injection moulding tools. The effect of the cutting parameters on the surface quality and on the ratio of Rz/ Ra was investigated in a comprehensive cutting parameter range. ANOVA was used for the statistical evaluation. A novel method is presented, which allows a detailed analysis of the surface profile and repetitions, and identify the frequencies that create the characteristic profile of the surface. The procedure establishes a connection between the frequencies obtained during the analysis of dynamics (forces, vibrations) of the micro-milling process and the characterising repetitions and frequencies of the surface.


2014 ◽  
Vol 13 (01) ◽  
pp. 41-54 ◽  
Author(s):  
S. Kalidass ◽  
P. Palanisamy

Tool wear of a cutting tool has a significant impact on the tool life and surface quality of the finished product. Tool wear is influenced by many factors such as cutting parameters, tool geometry, coating type, work piece material, chatter, and cutting condition. In the present work, the design of experiments (DOE) technique has been used for four factors at five levels to conduct experiments. Tool wear is taken as the response variable measured during end milling, while helix angle, spindle speed, feed and depth of cut are taken as the input parameters. The material and tool selected for this study are AISI 304 stainless steel and uncoated solid carbide end mill cutter respectively. The tool wear was measured using tool maker's microscope. The experimental values are used in six sigma software for finding the coefficients to develop the regression model. The direct and interaction effect of the machining parameter with tool wear were analyzed using contour graphs, which helped to select process parameters for reducing tool wear and also ensure quality of milling.


2020 ◽  
Vol 22 (4) ◽  
pp. 31-40
Author(s):  
Andrei Markov ◽  
◽  
Vyacheslav Nekrasov ◽  
Jian Su ◽  
Azhar Salman ◽  
...  

Introduction. Today fiberglass is one of the most common composite materials. Therefore, its mechanical processing continues to be the subject of many studies. In many scientific publications, the influence of cutting modes and structural and geometric parameters of the tool on the roughness of the machined surface, cutting forces and wear of the cutting tool has been established. The purpose of this work is to study the effect of machining modes on delamination and roughness of fiberglass composites during end milling, as well as testing the hypothesis about the effect of torque on the delamination. The relevance of the study is due to the fact that delamination, along with roughness, has a significant impact on the quality of processing and subsequent assembly of the finished product. A criterion is proposed for assessing the magnitude of the delamination of composite materials during its machining. The results of experimental studies of the torque on the cutter, the relative coefficient of delamination and surface roughness from cutting conditions are presented. Methods: factorial experiment using an experimental assembly developed by the authors based on a piezoelectric torque sensor. The installation allows real-time recording of the change in torque during the milling process, depending on the modes of operation. Results and Discussion. A comparative analysis of the obtained dependences showed that the torque is directly related to delamination. To reduce the delamination, the depth of cut should be decreased, and in order to ensure the specified productivity, the feed and the rotational speed of the cutter should be increased. The presented results confirm the prospects of the developed approach aimed at machining new classes of composite materials.


2012 ◽  
Vol 723 ◽  
pp. 365-370 ◽  
Author(s):  
Rong Bian ◽  
Eleonora Ferraris ◽  
Jun Qian ◽  
Dominiek Reynaerts ◽  
Liang Li ◽  
...  

This work presents an experimental investigation on micro-milling of fully sintered Zirconia (ZrO2) by diamond coated tools. The experiments were conducted on a Kern MMP 2522 micro-milling centre and WC micro end mills, diamond coated by chemical vapour deposition (CVD) and of stiff geometry were employed as cutting tools. The effects of cutting parameters and milling time on tool wear were investigated. The results revealed that the tool wear characters included diamond coating delamination and wear of substrate WC. Both cutting forces and machined surface quality were affected by tool wear with the progress of milling.


2013 ◽  
Vol 770 ◽  
pp. 248-252 ◽  
Author(s):  
Ni Chen ◽  
Ming Jun Chen ◽  
Hai Bo Ni ◽  
Ning He ◽  
Zhan Qiang Liu

Burrs generated in micro-milling operation have a significant impact on the surface quality and operational performance of the finished microstructures. In order to gain a better recognition of burr generation process, 3-dimensional double-edged micro-flat end milling operation FEM models on Ti6Al4V have been established. Burrs occurred in simulation can be classified into three types: entrance burr, exit burr, top burr. Their formation processes and causes are well investigated and analyzed, moreover, a series of experiments are conducted to validate the burr morphologies which are received in simulation. At last, the effect of cutting parameters on top burr size is studied through orthogonal experiment on Ti6Al4V, it can be concluded that the axial depth of cut has the greatest effect on top burr size, and the effect of spindle speed on top burr size is the least.


2015 ◽  
Vol 813-814 ◽  
pp. 376-381 ◽  
Author(s):  
B. Yazhini ◽  
S. Rajeswari ◽  
Sivasakthivel

This paper embarks the machining parameters of Turning by optimization using Taguchi’s approach. The optimization is very essential in order to obtain the expected surface quality. The results of cutting parameters of optimization is seen in the Surface Roughness, Tool wear and MRR of the material. The L18 Orthogonal array has been chosen for the optimization of Valve Steel SUH03.The uncoated carbide inserts were used and the four parameters Speed, Feed, Depth of Cut and Nose Radius has been taken as input parameters. The Signal to Noise ratio and Analysis of Variance software has been analyzed using Minitab software through which the optimal cutting parameters of the best surface roughness, tool wear and MRR has been obtained. The final results have been compared by the Gray relational analysis to find the optimum machining conditions of all the parameters.


Sign in / Sign up

Export Citation Format

Share Document