undeformed chip thickness
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaozhao Lei ◽  
Xiaojun Lin ◽  
Gang Wu ◽  
Luzhou Sun

In order to improve the machining quality and efficiency and optimize NC machining programming, based on the existing cutting force models for ball-end, a cutting force prediction model of free-form surface for ball-end was established. By analyzing the force of the system during the cutting process, we obtained the expression equation of the instantaneous undeformed chip thickness during the milling process and then determined the rule of the influence of the lead angle and the tilt angle on the instantaneous undeformed chip thickness. It was judged whether the cutter edge microelement is involved in cutting, and the algorithm flow chart is given. After that, the cutting force prediction model of free-form surface for ball-end and pseudocodes for cutting force prediction were given. MATLAB was used to simulate the prediction force model. Finally, through the comparative analysis experiment of the measured cutting force and the simulated cutting force, the experimental results are basically consistent with the theoretical prediction results, which proves that the model established in this paper can accurately predict the change of the cutting force of the ball-end cutter in the process of milling free-form surface, and the error of the cutting force prediction model established in this paper is reduced by 15% compared with the traditional cutting force prediction model.


Author(s):  
Jim A. Bergmann ◽  
Nils Potthoff ◽  
Tobias Rickhoff ◽  
Petra Wiederkehr

AbstractThe aerospace industry utilizes nickel-based super-alloys due to its high level of strength and corrosion resistance. To evaluate milling strategies regarding tool wear, the prediction of forces during these cutting operations is essential. This comprises the determination of the undeformed chip thickness. Due to the complex interdependencies of tool engagements, the determination of these thicknesses is challenging. A geometric physically-based simulation system was extended by a novel time-discrete envelope model to increase the precision of the calculated undeformed chip thicknesses. In order to take tool wear into account, digitized topographies of cutting inserts in different states of tool wear were modelled.


2021 ◽  
Author(s):  
Yonghao Wang ◽  
Ping Zhou ◽  
Yuhang Pan ◽  
Ying Yan ◽  
Dongming Guo

Abstract Grinding is a popular method for producing high-quality parts made of hard and brittle materials. A lot of researchers have focused on the impact of grinding parameters on surface quality. However, only a few studies discussed the surface quality instability caused by the grinding wheel wear during a long grinding process. In this paper, through wheel state monitoring and surface quality testing of ground samples, it is found that the relationship between ground surface roughness and theoretical undeformed chip thickness is significantly affected by the grinding wheel wear state, rather than maintain steady as described in most available models. By introducing the normal grinding force, a linearly relationship was found among normal grinding force, undeformed chip thickness and ground surface roughness. Besides, sensitivity analysis was conducted to guide the parameter adjustment to maintain the stability of ground surface roughness and grinding state. The mechanism of the effect of wheel wear on normal grinding force was also studied in detail. This study will help to further understand the mechanism of the influence of wheel wear on the grinding stability.


Author(s):  
Da Qu ◽  
Bo Wang ◽  
Yuan Gao ◽  
Huajun Cao

Abstract Micro-milling is widely used in various crucial fields with the ability of machining micro- and meso-scaled functional structures on various materials efficiently. However, the micro-milling force model is not comprehensively developed yet when tool feature sizes continually decrease to under two hundred microns in a low-stiffness system. This paper proposes an analytical force model considering the influence of tool radius, size effect, tool runout, tool deflection, and the actual trochoidal trajectories and the interaction of historical tool teeth trajectories (IHTTT). Different micro-milling status are recognized by analyzing the cutting process of different tool teeth. Conditions of single-tooth cutting status are determined by a proposed numerical algorithm, and entry angle and exit angle are analyzed under various cutting conditions for the low-stiffness system. Three micro-milling status, including single-tooth cutting status, are distinguished based on the instantaneous undeformed chip thickness resulting in three types of material removal mechanisms in predicting micro-milling force components. Discontinuous change rates of undeformed chip thickness are found in the low-stiffness micro-milling system. The proposed micro-milling force model is then verified through experiments of micro slot milling Elgiloy alloy with a 150-µm-diametrical two-teeth micro-end-mill. The experimental results show a Root-Mean-Square Error (RSME) of 0.092 N in the predicted resultant force, accounting for approximately 5.12% of the measured force, by which the proposed theoretical model is verified to be of good prediction accuracy.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 924
Author(s):  
Xian Wu ◽  
Li Liu ◽  
Mingyang Du ◽  
Jianyun Shen ◽  
Feng Jiang ◽  
...  

Micro milling is widely used to manufacture micro parts due to its obvious advantages. The minimum undeformed chip thickness, the effective rake angle, and size effect are the typical characteristics and closely related to each other in micro milling. In this paper, the averaging method is proposed to quantitatively estimate the effective rake angle in the cutting process. The minimum undeformed chip thickness is explained based on the effective rake angle and determined to be 0.17 rn (tool cutting edge radius). Then, micro milling experiment was conducted to study the effect of the minimum undeformed chip thickness. It is found that the minimum undeformed chip thickness results in the unstable cutting process, the uneven peaks on cutting force signal, and the dense characteristic frequency distribution on frequency domain signal. The dominant ploughing effect induces the great specific cutting energy and the deteriorated surface roughness due to the minimum undeformed chip thickness.


Sign in / Sign up

Export Citation Format

Share Document