Structural characterization of semiconductor multi-layer pad

Author(s):  
Michele Calabretta ◽  
Alessandro Sitta ◽  
Salvatore Massimo Oliveri ◽  
Gaetano Sequenzia

Structural mechanics and mechanical reliability issues are becoming more and more challenging in the semiconductor industry due to the continuous trend of the device dimensional shrinkage and simultaneous increased operative temperature and power density. As main consequence of the downsizing and more aggressive operative conditions, the mechanical robustness assessment is now having a central role in the device engineering and assessment phase. The risk of mechanical crack in the brittle oxide layers, which are embedded in pad stacks, increases during the device manufacturing processes such as the electrical wafer testing and during wire bonding. This risk increases with the presence of intrinsic mechanical stress in individual layers resulting from the metal grain growth mechanisms, the stack layers’ interfacial mismatches in coefficients of thermal expansion and the temperature stress induced by doping diffusion and film deposition. The current trend of innovation in the electronic industry is going over the semiconductor material itself and it is now impacting the improvement of the Back-End of Line. Key actors are becoming the interactions between the semiconductor die and the device packaging such as adhesion layers, barriers and metal stacks. In the present work, different pad structures have been structurally analyzed and benchmarked. The experimental characterization of the pad structures has been done through a flat punch nano-indentation to investigate on the mechanical strength and the crack propagation. The considered mechanical load reproduces the vertical impact force applied during wire bonding process to create the bond-pad electrical interconnection. The obtained testing results have been compared to finite element models to analyze the stress distribution through the different layers’ stacks. Scope of this work is to demonstrate the validity of the proposed integrated numerical/experimental methodology, showing the impact of the metal connections layouts by the analysis of the stress notch factors and crack propagation behaviour.

2019 ◽  
Vol 21 (3) ◽  
pp. 183
Author(s):  
Ardi Rahman ◽  
Okasatria Novyanto ◽  
Nurul Alfiyati ◽  
Ahmad Sidik ◽  
Irman Idris ◽  
...  

<p>Recently, semiconductor industry grows rapidly due to high demand of modern electronic system. In addition, the value of investments in Indonesia electronic industries also more than doubled during 2015-2017. This increase in investment will certainly have an impact on the increasing the needs for electronic / semiconductor component processing machines. To support it, well performed spin coater then were designed. The characterization of spin coating process was done at BSN (formerly was known as Research Center for Metrology LIPI) using roughness measuring instrument/ profilometer that traceable to PTB (Germany) to guarantee the validity of the measurement results. Characterization experiment used positive photoresist SPR3018 to see the performance of system designed. Three different experiments were performed to determine the impact of spin speed and spin time to photoresist thickness and uniformity. The characterization shown that on spin speed increased, the photoresist was deployed thinner. The thickness of the photoresist is inversely proportional to the square root of spin speed. Furthermore, the longer spin coating time, it increases the tendency of concave surface. This work is expected to benefit the practitioners of electronic systems, semiconductor industries, and even SNI conceptors.</p>


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
L. G. Turner ◽  
N. Lewis

There is great interest in the growth of thin superconducting films of YBa2Cu3Ox on silicon, since this is a necessary first step in the use of this superconductor in a variety of possible electronic applications including interconnects and hybrid semiconductor/superconductor devices. However, initial experiments in this area showed that drastic interdiffusion of Si into the superconductor occurred during annealing if the Y-Ba-Cu-O was deposited direcdy on Si or SiO2, and this interdiffusion destroyed the superconducting properties. This paper describes the results of the use of a zirconia buffer layer as a diffusion barrier in the growth of thin YBa2Cu3Ox films on Si. A more complete description of the growth and characterization of these films will be published elsewhere.Thin film deposition was carried out by sequential electron beam evaporation in vacuum onto clean or oxidized single crystal Si wafers. The first layer evaporated was 0.4 μm of zirconia.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


2020 ◽  
Vol 4 (2) ◽  
pp. 118-129
Author(s):  
Asti Gumartifa ◽  
◽  
Indah Windra Dwie Agustiani

Gaining English language learning effectively has been discussed all years long. Similarly, Learners have various troubles outcomes in the learning process. Creating a joyful and comfortable situation must be considered by learners. Thus, the implementation of effective learning strategies is certainly necessary for English learners. This descriptive study has two purposes: first, to introduce the classification and characterization of learning strategies such as; memory, cognitive, metacognitive, compensation, social, and affective strategies that are used by learners in the classroom and second, it provides some questionnaires item based on Strategy of Inventory for Language Learning (SILL) version 5.0 that can be used to examine the frequency of students’ learning strategies in the learning process. The summary of this study explains and discusses the researchers’ point of view on the impact of learning outcomes by learning strategies used. Finally, utilizing appropriate learning strategies are certainly beneficial for both teachers and learners to achieve the learning target effectively.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P &lt; 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P &lt; 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


Religions ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 357
Author(s):  
Rafael López Cordero ◽  
Francisca Ruiz Garzón ◽  
Lourdes Medina Martínez ◽  
María del Carmen Olmos-Gómez

The current trend of secularization seems to be leading to a gradual withdrawal of religion from public spaces. However, in an increasingly internationalized world, it is becoming more and more important to study the roles of religion and religiosity and their potential in relation to dialogue and social conflicts and tensions. Education is a vital field within which to address this religious issue and create an educational dialogue in order to promote coexistence. By following a quantitative, descriptive, cross-sectional study, based on a quasi-experimental methodology with a social–analytical character, our aim is to assess the existing connections between religion, interrelation and opinion in Spanish children and adolescents. Special attention is paid to the interaction between age and beliefs. We carried out our study with the use of a questionnaire distributed to eleven secondary schools, with students aged between 11 and 16 years old, in three regions of southern Spain (Andalusia, Ceuta, and Melilla) characterized by high religious diversity and multiculturalism. The multivariate analysis carried out in this study identifies the effects of variance on the influence of age and religion, highlighting the interaction between the two. It is observed that the youngest students are those who express their opinions about religion the least, while those belonging to younger age groups and majority religions are those who express a greater religious coexistence, with Muslims externalizing their religious condition the most.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


Sign in / Sign up

Export Citation Format

Share Document