Car abuse rate: A car treatment history representation

Author(s):  
Aysan Mahmoudzadeh ◽  
Farshad Eshghi ◽  
Manoochehr Kelarestaghi

Trade of pre-owned context-dependent-pricey mechanical equipment involves lots of uncertainty, due to the complexity of the condition checking procedure of this category of equipment. We put forward the idea of continuous operation monitoring and simple reporting to make this trade experience as efficient and peaceful as possible. To validate the practicality of the idea, we choose pre-owned passenger vehicles as the target use-case. In the last several years, the market for secondhand car sales has grown a lot, due to its affordability and rising new car prices, thus, giving it a larger share of the overall car market’s value. The used car trade is usually a time-consuming, stressful, and fraud-prone process. In this paper, we propose a system, which is a novel concept rather than technology, to represent the treatment history of a car simply with two scores, denoting the mechanical and the body treatments, using the electronic control unit and other add-on sensors’ information. These scores are cyclically and wirelessly transmitted to and recorded in a data center to be fetched at a later time. The two treatment scores alongside the production year, the mileage, the vehicle history reports, and online marketplace valuations provide buyers with comfort and peace of mind in choosing a used car.

2011 ◽  
Vol 121-126 ◽  
pp. 3880-3884
Author(s):  
Chuan Zheng ◽  
Wei Sun ◽  
Bu Min Meng

The structure of a CAN/LIN hybrid network automobile body control system is introduced and the test software for the CAN/LIN hybrid network Body Control Module (BCM) has been designed and developed with Visual C++. It can test and display executive devices’ working status in the body control system in real time, update the Electronic Control Unit (ECU) program through CAN bus, get the fault code of BCM and position fault source when BCM need to be diagnosed. This paper describes in details the general design scheme of the software, important function module design, the operating interface design and application method, and also point out how to turn these ideas into reality


2012 ◽  
Vol 241-244 ◽  
pp. 557-561
Author(s):  
Feng Jian Yang ◽  
Xu Yang Huo

The design of multifunctional household electronic medicine-chest is described in this article. It includes two parts: intelligent electronic control unit and the body of the chest. The body of chest consists of 8 drawers and an operation panel. A switch sensor is settled in each drawer to detect whether the drawer is opened and the medicine is taken out. The electronic control unit is used to set and store the information of taking medicine for four members in a family. In order to confirm the information is set correctly, the information of taking medicine can be checked by means of the function of reviewing. According to the set information, it can remind the proper member to take medicine at the set time. A section of voice and a blinking light are used to guide the member to open the corresponding drawer and take out a certain number of medicines. The Medicine-Chest has two power supply modes, an outer power supply and a rechargeable lithium-ion battery supply. A power manage circuit is used to switch between the two supplies and to recharge the battery. The designed multifunctional household electronic medicine-chest is useful for aged people.


AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 290-306
Author(s):  
Tareq Khan

Artificial intelligence (AI) has brought lots of excitement to our day-to-day lives. Some examples are spam email detection, language translation, etc. Baby monitoring devices are being used to send video data of the baby to the caregiver’s smartphone. However, the automatic understanding of the data was not implemented in most of these devices. In this research, AI and image processing techniques were developed to automatically recognize unwanted situations that the baby was in. The monitoring device automatically detected: (a) whether the baby’s face was covered due to sleeping on the stomach; (b) whether the baby threw off the blanket from the body; (c) whether the baby was moving frequently; (d) whether the baby’s eyes were opened due to awakening. The device sent notifications and generated alerts to the caregiver’s smartphone whenever one or more of these situations occurred. Thus, the caregivers were not required to monitor the baby at regular intervals. They were notified when their attention was required. The device was developed using NVIDIA’s Jetson Nano microcontroller. A night vision camera and Wi-Fi connectivity were interfaced. Deep learning models for pose detection, face and landmark detection were implemented in the microcontroller. A prototype of the monitoring device and the smartphone app were developed and tested successfully for different scenarios. Compared with general baby monitors, the proposed device gives more peace of mind to the caregivers by automatically detecting un-wanted situations.


Author(s):  
C Kannan ◽  
R Vignesh ◽  
C Karthick ◽  
B Ashok

Lithium-ion batteries are facing difficulties in an aspect of protection towards battery thermal safety issues which leads to performance degradation or thermal runaway. To negate these issues an effective battery thermal management system is absolute pre-requisite to safeguard the lithium-ion batteries. In this context to support the future endeavours and to improvise battery thermal management system (BTMS) design and its operation the article reveals on three aspects through the analysis of scientific literatures. First, this paper collates the present research progress and status of various battery management strategies employed to lithium-ion batteries. Further, to promote stable and efficient BTMS operation as an initiation the extensive attention is paid towards roles of BTMS electronic control unit and also presented the essential functionality need to consider for designing best BTMS control strategy. Finally, elucidates the various unconventional assessment tools can be employed to recognize the suitable thermal management technique and also for establish optimum BTMS operation based on requirements. From the experience of this article additionally delivers some of the research gaps identified and the essential areas need to focus for the development of superior lithium-ion BTMS technology. All the contents reveal in this article will hopefully assist to the design commercially suitable effective BTMS technology especially for electro-mobility application.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3215
Author(s):  
David Fernández-Rodríguez ◽  
Magín Lapuerta ◽  
Lizzie German

Nowadays, the transport sector is trying to face climate change and to contribute to a sustainable world by introducing modern after-treatment systems or by using biofuels. In sectors such as road freight transportation, agricultural or cogeneration in which the electrification is not considered feasible with the current infrastructure, renewable options for diesel engines such as alcohols produced from waste or lignocellulosic materials with advanced production techniques show a significant potential to reduce the life-cycle greenhouse emissions with respect to diesel fuel. This study concludes that lignocellulosic biobutanol can achieve 60% lower greenhouse gas emissions than diesel fuel. Butanol-diesel blends, with up to 40% butanol content, could be successfully used in a diesel engine calibrated for 100% diesel fuel without any additional engine modification nor electronic control unit recalibration at a warm ambient temperature. When n-butanol is introduced, particulate matter emissions are sharply reduced for butanol contents up to 16% (by volume), whereas NOX emissions are not negatively affected. Butanol-diesel blends could be introduced without startability problems up to 13% (by volume) butanol content at a cold ambient temperature. Therefore, biobutanol can be considered as an interesting option to be blended with diesel fuel, contributing to the decarbonization of these sectors.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Nicholas Ayres ◽  
Lipika Deka ◽  
Daniel Paluszczyszyn

The vehicle-embedded system also known as the electronic control unit (ECU) has transformed the humble motorcar, making it more efficient, environmentally friendly, and safer, but has led to a system which is highly dependent on software. As new technologies and features are included with each new vehicle model, the increased reliance on software will no doubt continue. It is an undeniable fact that all software contains bugs, errors, and potential vulnerabilities, which when discovered must be addressed in a timely manner, primarily through patching and updates, to preserve vehicle and occupant safety and integrity. However, current automotive software updating practices are ad hoc at best and often follow the same inefficient fix mechanisms associated with a physical component failure of return or recall. Increasing vehicle connectivity heralds the potential for over the air (OtA) software updates, but rigid ECU hardware design does not often facilitate or enable OtA updating. To address the associated issues regarding automotive ECU-based software updates, a new approach in how automotive software is deployed to the ECU is required. This paper presents how lightweight virtualisation technologies known as containers can promote efficient automotive ECU software updates. ECU functional software can be deployed to a container built from an associated image. Container images promote efficiency in download size and times through layer sharing, similar to ECU difference or delta flashing. Through containers, connectivity and OtA future software updates can be completed without inconveniences to the consumer or incurring expense to the manufacturer.


2010 ◽  
Vol 40-41 ◽  
pp. 156-161 ◽  
Author(s):  
Yang Li ◽  
Yan Qiang Li ◽  
Zhi Xue Wang

With the rapid development of automotive ECUs(Electronic Control Unit), the fault diagnosis becomes increasingly complicated. And the link between fault and symptom becomes less obvious. In order to improve the maintenance quality and efficiency, the paper proposes a fault diagnosis approach based on data mining technologies. By making full use of data stream, we firstly extract fault symptom vectors by processing data stream, and then establish a diagnosis decision tree through the ID3 decision tree algorithm, and finally store the link rules between faults and the related symptoms into historical fault database as a foundation for the fault diagnosis. The database provides the basis of trend judgments for a future fault. To verify this approach, an example of diagnosing faults of entertainment ECU is showed. The test result testifies the reliability and validity of this diagnostic method and reduces the cost of ECU diagnosis.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881407
Author(s):  
Yasin Karagöz ◽  
Majid Mohammad Sadeghi

In this study, it was aimed to operate today’s compression ignition engines easily in dual-fuel mode with a developed electronic control unit. Especially, diesel engines with mechanical fuel system can be easily converted to common-rail fuel system with a developed electronic control unit. Also, with this developed electronic control unit, old technology compression ignition engines can be turned into dual-fuel mode easily. Thus, thanks to the flexibility of engine maps to be loaded into the electronic control unit, diesel engines can conveniently be operated with alternative gas fuels and diesel dual fuel. In particular, hydrogen, an alternative, environmentally friendly, and clean gas fuel, can easily be used with diesel engines by pilot spraying. Software and hardware development of electronic control unit are made, in order to operate a diesel engine with diesel+hydrogen dual fuel. Finally, developed electronic control unit was reviewed on 1500 r/min stable engine speed on different hydrogen energy rates (0%, 15%, 30%, and 45% hydrogen) according to thermic efficiency and emissions (CO, total unburned hydrocarbons, NOx, and smoke), and apart from NOx emissions, a significant improvement has been obtained. There was no increased NOx emission on 15% hydrogen working condition; however, on 45% hydrogen working condition, a dramatic increase arose.


2014 ◽  
Vol 494-495 ◽  
pp. 242-245
Author(s):  
Xin Qiang Liu ◽  
Tian Yi Yan

With the development of automotive electronics industry, the car which has electronically controlled air suspension is gained wide application. we designed an electronic control unit of automobile electronically controlled air suspension system (ECAS) including the hardware system which include the speed signal collection and processing circuit, the solenoid valve drive circuit, the CAN communication design, height detection circuit, Freescale microcontroller etc and the control strategy while propose some the basic ideas, based on Freescale microcontroller, after introducing the composition and the principle of electronically controlled air suspension. The ECAS can improve vehicle fuel economy, ride comfort and traffic-ability.


Sign in / Sign up

Export Citation Format

Share Document