Structural and torsional vibration and noise analysis of a dry screw compressor

Author(s):  
James Willie ◽  
Ronald Sachs

This paper investigates torsional vibration and pulsating noise in a dry screw compressor. The compressor is designed at Gardner Denver (GD) and is oil-free and use for mounting on highway trucks in the dry bulk industry. They are driven using a power take-off (PTO) transmission and gear box on a truck. Torque peak fluctuations and noise measurements are made and their sources are investigated and reported in this work. To accurately predict the torsional response (frequency and relative angular deflection and torque amplitude), the Holzer method is used. It is shown that the first torsional frequency is manifested as sidebands in the gear train meshing frequencies and this can lead to noise. Using measurement data and curve fitting it is deduced that the pulsating noise is a result of amplitude modulation and not frequency modulation. Sensitivity analysis of the drive train identifies the weakest link in the drive train that limits the first torsional frequency to a low value. Tuning options like increasing the stiffness or inertia of the weakest element and shifting the input speed to the right are presented and discussed. Finally, the effect of higher-order torsional modes on inter-lobe clearance distribution of the rotors is investigated.

2015 ◽  
Vol 14 (04) ◽  
pp. 1550032
Author(s):  
Zhihua Gao ◽  
Yadan Li ◽  
Limin Zhao ◽  
Shuangwei Wang

Noise maps are applied to assess noise level in cities all around the world. There are mainly two ways of producing noise maps: one way is producing noise maps through theoretical simulations with the surrounding conditions, such as traffic flow, building distribution, etc.; the other one is calculating noise level with actual measurement data from noise monitors. Currently literature mainly focuses on considering more factors that affect sound traveling during theoretical simulations and interpolation methods in producing noise maps based on measurements of noise. Although many factors were considered during simulation, noise maps have to be calibrated by actual noise measurements. Therefore, the way of obtaining noise data is significant to both producing and calibrating a noise map. However, there is little literature mentioned about rules of deciding the right monitoring sites when placed the specified number of noise sensors and given the deviation of a noise map produced with data from them. In this work, by utilizing matrix Gray Absolute Relation Degree Theory, we calculated the relation degrees between the most precise noise surface and those interpolated with different combinations of noise data with specified number. We found that surfaces plotted with different combinations of noise data produced different relation degrees with the most precise one. Then we decided the least significant one among the total and calculated the corresponding deviation when it was excluded in making a noise surface. Processing the left noise data in the same way, we found out the least significant datum among the left data one by one. With this method, we optimized the noise sensor’s distribution in an area about 2[Formula: see text]km2. And we also calculated the bias of surfaces with the least significant data removed. Our practice provides an optimistic solution to the situation faced by most governments that there is limited financial budget available for noise monitoring, especially in the undeveloped regions.


2018 ◽  
Vol 25 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Yaser Kiani

AbstractThe present study deals with the free torsional vibration of a composite conical shell made of a polymeric matrix reinforced with carbon nanotubes (CNTs). Distribution of CNTs across the thickness of the conical shell may be uniform or functionally graded. Five different cases of functionally graded reinforcements are considered. First-order shear deformable shell theory compatible with the Donnell kinematic assumptions is used to establish the motion equations of the shell. These equations are two coupled equations which should be treated as an eigenvalue problem. The generalized differential quadrature method is used to obtain a numerical solution for the torsional frequency parameters and the associated mode shapes of the shell. After validating the results of this study for the cases of isotropic homogeneous cone and annular plates, parametric studies are carried out to analyze the influences of geometrical characteristics of the shell, volume fraction of CNTs, and grading profile of the CNTs. It is shown that volume fraction of CNTs is an important factor with regard to torsional frequencies of the shell; however, grading profile does not change the torsional frequencies significantly.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


Author(s):  
Jinghui Sun ◽  
Lee Liu ◽  
William N. Patten

Abstract The kinematics of planetary gearing are complex; thus, making it difficult to build an effective dynamic model. In this paper, a single-mass model of a planetary gear and shaft system is developed to study the torsional vibration of the mechanism. Two new models of the system are proposed: (a) a fictitious co-planar model and (b) an equivalent shaft model. The results from the calculations and analyses using these models indicate that: 1) the single-mass model and the general rotary model are both limited, either mathematically or geometrically; 2) the fictitious co-planar model includes all of the geometric and dynamic parameters of the general rotary model, and it can be connected with the shaft system easily; and 3) using a mathematical treatment, the equivalent shaft model is demonstrated to be the most useful and most effective model for the calculation of torsional vibration of a shaft and planetary gear train.


Author(s):  
D. C. Lee ◽  
J. D. Yu

Under steady state condition, unstable torsional vibration normally does not occur in shafting systems using 4stroke diesel engine due to hysteresis damping of shafting system and relative damping of standard fitted damper. However, the unstable torsional vibration occurs on marine propulsion shafting systems due to slippage of a multi-friction clutch installed between increasing gear box and shaft generator. To identify this unstable vibration and make proper counter measure, the simulation for transient torsional vibration using the Newmark method is introduced in this paper. The mechanism of this unstable vibration is verified by vibration and noise measurements of the shafting system.


2016 ◽  
Vol 50 (0) ◽  
Author(s):  
Fabio Scatolini ◽  
Cláudio Jorge Pinto Alves

ABSTRACT OBJECTIVE To perform a quantitative analysis of the background noise at Congonhas Airport surroundings based on large sampling and measurements with no interruption. METHODS Measuring sites were chosen from 62 and 72 DNL (day-night-level) noise contours, in urban sites compatible with residential use. Fifteen sites were monitored for at least 168 hours without interruption or seven consecutive days. Data compilation was based on cross-reference between noise measurements and air traffic control records, and results were validated by airport meteorological reports. Preliminary diagnoses were established using the standard NBR-13368. Background noise values were calculated based on the Sound Exposure Level (SEL). Statistic parameters were calculated in one-hour intervals. RESULTS Only four of the fifteen sites assessed presented aircraft operations as a clear cause for the noise annoyance. Even so, it is possible to detect background noise levels above regulation limits during periods of low airport activity or when it closes at night. CONCLUSIONS All the sites monitored showed background noise levels above regulation limits between 7:00 and 21:00. In the intervals between 6:00-6:59 and 21:00-22:59 the noise data, when analyzed with the current airport operational characteristics, still allow the development of additional mitigating measures.


2021 ◽  
Author(s):  
Chun-Man Liao ◽  
Franziska Mehrkens ◽  
Celine Hadziioannou ◽  
Ernst Niederleithinger

<p>The aim of this work is to investigate the application of seismological noise-based monitoring for bridge structures. A large-scale two-span concrete bridge model with a build-in post-tensioning system, which is exposed to environmental conditions, is chosen as our experimental test structure. Ambient seismic noise measurements were carried out under different pre-stressed conditions. Using the seismic interferometry technique, which is applied to the measurement data in the frequency domain, we reconstruct waveforms that relate to wave propagation in the structure. The coda wave interferometry technique is then implemented by comparing two waveforms recorded in two pre-stress states. Any relative seismic velocity changes are identified by determining the correlation coefficients and reveal the influence of the pre-stressing force. The decrease of the wave propagation velocity indicates the loss of the pre-stress and weakening stiffness due to opening or event extension of cracks. We conclude that the seismological methods used to estimate velocity change can be a promising tool for structural health monitoring of civil structures.</p>


2019 ◽  
Vol 44 (5) ◽  
pp. 519-547
Author(s):  
Saeed Asadi ◽  
Håkan Johansson

Wind turbines normally have a long operational lifetime and experience a wide range of operating conditions. A representative set of these conditions is considered as part of a design process, as codified in standards. However, operational experience shows that failures occur more frequently than expected, the costlier of these including failures in the main bearings and gearbox. As modern turbines are equipped with sophisticated online systems, an important task is to evaluate the drive train dynamics from online measurement data. In particular, internal forces leading to fatigue can only be determined indirectly from other locations’ sensors. In this contribution, a direct wind turbine drive train is modelled using the floating frame of reference formulation for a flexible multibody dynamics system. The purpose is to evaluate drive train response based on blade root forces and bedplate motions. The dynamic response is evaluated in terms of main shaft deformation and main bearing forces under different wind conditions. The model was found to correspond well to a commercial wind turbine system simulation software (ViDyn).


2020 ◽  
Vol 38 (6) ◽  
pp. 7585-7594
Author(s):  
Weiqing Yu ◽  
Zhichao Huang ◽  
Chengping Zhong ◽  
Juping Liu ◽  
Zhensong Yuan

Sign in / Sign up

Export Citation Format

Share Document