degree theory
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 110)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
Dionicio Pastor Dallos Santos

Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type\[\left\{\begin{array}{lll}(\varphi(u' ))' = f(t,u,u') & & \\u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad \end{array}\right.\] where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.


2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Yizhe Feng ◽  
Zhanbing Bai

In this paper, the solvability of a system of nonlinear Caputo fractional differential equations at resonance is considered. The interesting point is that the state variable x∈Rn and the effect of the coefficient matrices matrices B and C of boundary value conditions on the solvability of the problem are systematically discussed. By using Mawhin coincidence degree theory, some sufficient conditions for the solvability of the problem are obtained.


Author(s):  
Lisbeth Carrero ◽  
Alexander Quaas

In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$ , singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.


Author(s):  
Naleen Chaminda Ganegoda ◽  
Karunia Putra Wijaya ◽  
Joseph Páez Chávez ◽  
Dipo Aldila ◽  
K. K. W. Hasitha Erandi ◽  
...  

AbstractSince the earliest outbreak of COVID-19, the disease continues to obstruct life normalcy in many parts of the world. The present work proposes a mathematical framework to improve non-pharmaceutical interventions during the new normal before vaccination settles herd immunity. The considered approach is built from the viewpoint of decision makers in developing countries where resources to tackle the disease from both a medical and an economic perspective are scarce. Spatial auto-correlation analysis via global Moran’s index and Moran’s scatter is presented to help modulate decisions on hierarchical-based priority for healthcare capacity and interventions (including possible vaccination), finding a route for the corresponding deployment as well as landmarks for appropriate border controls. These clustering tools are applied to sample data from Sri Lanka to classify the 26 Regional Director of Health Services (RDHS) divisions into four clusters by introducing convenient classification criteria. A metapopulation model is then used to evaluate the intra- and inter-cluster contact restrictions as well as testing campaigns under the absence of confounding factors. Furthermore, we investigate the role of the basic reproduction number to determine the long-term trend of the regressing solution around disease-free and endemic equilibria. This includes an analytical bifurcation study around the basic reproduction number using Brouwer Degree Theory and asymptotic expansions as well as related numerical investigations based on path-following techniques. We also introduce the notion of average policy effect to assess the effectivity of contact restrictions and testing campaigns based on the proposed model’s transient behavior within a fixed time window of interest.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Q-Heung Choi ◽  
Tacksun Jung

AbstractWe investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the corresponding eigenfunctions for the fractional N-Laplacian eigenvalue problem in the fractional Orlicz–Sobolev spaces, the contraction mapping principle on the fractional Orlicz–Sobolev spaces and Leray–Schauder degree theory.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 254-267
Author(s):  
Mohamed Houas ◽  
◽  
Zoubir Dahmani ◽  
Erhan Set ◽  
◽  
...  

We study the existence and uniqueness of solutions for integro-differential equations involving two fractional orders. By using the Banach’s fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree theory, the existence and uniqueness of solutions are obtained. Some illustrative examples are also presented.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 243-253
Author(s):  
Mustapha Ait Hammou ◽  

In this paper, we prove the existence of a weak solution for the Dirichlet boundary value problem related to a certain p(x)-Laplacian, by using the degree theory after turning the problem into a Hammerstein equation. The right hand side is a possibly discontinuous function in the second variable satisfying some non-standard growth conditions.


2021 ◽  
Vol 5 (4) ◽  
pp. 216
Author(s):  
Shahram Rezapour ◽  
Mohammed Said Souid ◽  
Sina Etemad ◽  
Zoubida Bouazza ◽  
Sotiris K. Ntouyas ◽  
...  

In this paper, we establish the existence of solutions to a nonlinear boundary value problem (BVP) of variable order at resonance. The main theorem in this study is proved with the help of generalized intervals and piecewise constant functions, in which we convert the mentioned Caputo BVP of fractional variable order to an equivalent standard Caputo BVP at resonance of constant order. In fact, to use the Mawhin’s continuation technique, we have to transform the variable order BVP into a constant order BVP. We prove the existence of solutions based on the existing notions in the coincidence degree theory and Mawhin’s continuation theorem (MCTH). Finally, an example is provided according to the given variable order BVP to show the correctness of results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sh. Rezapour ◽  
S. T. M. Thabet ◽  
M. M. Matar ◽  
J. Alzabut ◽  
S. Etemad

In this paper, we consider a generalized Caputo boundary value problem of fractional differential equation with composite p -Laplacian operator. Boundary value conditions of this problem are of three-point integral type. First, we obtain Green’s function in relation to the proposed fractional boundary value problem and then for establishing the existence and uniqueness results, we use topological degree theory and Banach contraction principle. Further, we consider a stability analysis of Ulam-Hyers and Ulam-Hyers-Rassias type. To examine the validity of theoretical results, we provide an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document