A grey hysteresis model of magnetorheological damper

Author(s):  
Xiong Deng ◽  
Xiaomin Dong ◽  
Wenfeng Li ◽  
Jun Xi

Owing to the complex nonlinear hysteresis of magnetorheological (MR) damper, the modeling of an MR damper is an issue. This paper examines a novel MR damper hysteresis model based on the grey theory, which can fully mine the internal laws for the data with small samples and poor information. To validate the model, the experiment is conducted in the MTS platform, and then the experimental results are compiled to identify the model parameters. Considering the complexity of the grey model and its inverse model solution, the grey model is simplified in two ways based on the grey relational analysis method. Furthermore, the simplified grey model compares to other models to prove the superiority of the grey model. The analysis suggests the fitting results correspond to the measured results, and the mean relative error (MRE) of grey model is within 2.04%. After the grey model is simplified, its accuracy is slightly reduced, while its inverse model is easier to solve and makes a unique solution. Finally, compared with the polynomial and Bouc-Wen model, the novel model with fewer identification parameters has high accuracy and predictive ability. This novel model has fabulous potential in designing the control strategy of MR damper.

2017 ◽  
Vol 24 (15) ◽  
pp. 3434-3453 ◽  
Author(s):  
MJL Boada ◽  
BL Boada ◽  
V Diaz

Semi-active suspensions based on magnetorheological (MR) dampers are receiving significant attention, especially for control of vibration isolation systems. The nonlinear hysteretic behavior of MR dampers can cause serious problems in controlled systems, such as instability and loss of robustness. Most of the developed controllers determine the desired damping forces which should be produced by the MR damper. Nevertheless, the MR damper behavior can only be controlled in terms of the applied current (or voltage). In addition to this, it is necessary to develop an adequate inverse dynamic model in order to calculate the command current (or voltage) for the MR damper to generate the desired forces as close as possible to the optimal ones. Due to MR dampers being highly nonlinear devices, the inverse dynamics model is difficult to obtain. In this paper, a novel inverse MR damper model based on a network inversion is presented to estimate the necessary current (or voltage) such that the desired force is exerted by the MR damper. The proposed inverse model is validated by carrying out experimental tests. In addition, a comparison of simulated tests with other damper controllers is also presented. Results show the effectiveness of the network inversion for inverse modeling of an MR damper. Thus, the proposed inverse model can act as a damper controller to generate the command current (or voltage) to track the desired damping force.


Author(s):  
Fanxu Meng ◽  
Jin Zhou ◽  
Chaowu Jin ◽  
Wentao Ji

The squeeze mode of the magnetorheological damper can be used to stabilize precision instruments (balances, optical devices, etc.) to eliminate interference from external vibrational noise, due to the small displacement and large damping offered by the magnetorheological fluid. The squeeze-strengthen effect observed experimentally in the magnetorheological fluid with squeeze mode can lead to the strain stiffening phenomenon, which is similar to that of the magnetorheological elastomer. In this study, a novel model is developed to characterize the dynamics of the squeeze mode magnetorheological damper considering the strain stiffening hysteresis behavior. An experimentally derived differential evolution algorithm is used to identify the model parameters. Simulation results show that the proposed model can accurately describe the dynamics of the squeeze mode magnetorheological damper including the strain stiffening phenomenon. Furthermore, the identified results obtained by the proposed model appear to be better than those obtained by the hyperbolic model.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jianming Jiang ◽  
Yu Zhang ◽  
Changqing Liu ◽  
Wanli Xie

In recent years, the nonhomogeneous grey model has received much attention owing to its flexibility and applicability of forecasting small samples. To improve further the prediction accuracy of the nonhomogeneous grey model, this paper is to introduce a new whitening equation with variable coefficient into the original nonhomogeneous grey model, which is abbreviated as ONGM1,1,k,c. First of all, the detailed computational steps of the time response function of the novel model and the restored values of the raw data sequence are deduced through grey modelling techniques. Secondly, two empirical examples from the previous literature are conducted to prove the validity of the novel model. Finally, the novel model is applied to forecast natural gas demand of China, and the results show that the novel model has a better prediction performance compared with other commonly used grey models, including GM1,1, DGM1,1, NGM1,1,k,c, and NGBM1,1.


2020 ◽  
Author(s):  
Hoang Anh NGO ◽  
Thai Nam HOANG

The Nonlinear Grey Bernoulli Model NGBM(1, 1) is a recently developed grey model which has various applications in different fields, mainly due to its accuracy in handling small time-series datasets with nonlinear variations. In this paper, to fully improve the accuracy of this model, a novel model is proposed, namely Rolling Optimized Nonlinear Grey Bernoulli Model RONGBM(1, 1). This model combines the rolling mechanism with the simultaneous optimization of all model parameters (exponential, background value and initial condition). The accuracy of this new model has significantly been proven through forecasting Vietnam’s GDP from 2013 to 2018, before it is applied to predict the total COVID-19 infected cases globally by day.


Author(s):  
Sevki Cesmeci ◽  
Nicholas L. Wilson ◽  
Norman M. Wereley ◽  
Ismail Sahin

In this study, the temperature dependent dynamic behavior of a magnetorheological (MR) damper is characterized. Substantial effort has been devoted to developing an understanding of the dynamic behavior of MR dampers with virtually no emphasis on temperature effects. However, MR dampers can experience large variations in temperature during operation as a result of damper self-heating, which may cause significant perturbations to its damping and yield force. Temperature variations also induce stiffness changes in the pneumatic accumulator due to gas law effects. To model temperature dependent effects, an MR damper, which was designed and fabricated for a ground vehicle seat suspension application, was tested over temperatures ranging from 0 °C to 100 °C at a constant frequency of 4 Hz and a constant amplitude of 7.62 mm on an MTS-810 material testing system equipped with a temperature-controlled environmental chamber. To model the MR damper behavior, a parametric algebraic model was used due to its physically motivated, low computational cost and high accuracy. Temperature dependent model parameters are identified from the experimental data by using a curve fitting method. Perturbations in model parameters arising over the tested temperature range indicate that yield force and post-yield viscosity are strongly dependent on temperature. As operating temperature increased from 0°C to 100°C, the controllable yield force decreased by up to 20%, the post-yield damping decreased by over 60%, and the stiffness at high piston velocity also increased significantly.


2015 ◽  
Vol 741 ◽  
pp. 28-31 ◽  
Author(s):  
Chang Hyun Cho ◽  
Seung Bok Choi

In modern society, a plenty of car accident is occurred and a lot of people get injury every day. For this reason, the importance of car safety has been increased and car safety has been extensively studied. Especially in many countries, the law about using baby safety seat is legislated to protect babies and children from accident. Thus, recently numerous products for baby safety have been developed. In this paper, a new type baby car seat is proposed to protect babies and children from frontal accident. In order to achieve this goal, design requirements of spring and MR(Magnetorheological) Damper which are main elements for a new type baby car seat are investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


Author(s):  
Zhongchao Deng ◽  
Dagang Zhang ◽  
Xiongliang Yao

This paper presents a new kind of vibration reduction and impact resistance isolator system based on magnetorheological technique, and its experiment results. The vibration and impact experiments were designed using MTS hydraulic loading system. There were many load cases being applied in the experiment with different mass of the model, exciting forces, and controllable electricity of MR damper (Magnetorheological Damper). The experiment results indicate that this isolator system can control the vibration response very well, especially near the natural frequency of the system; and the isolator system has a good performance in the impact experiment too, the response acceleration was evidently reduced, but the characteristic of MR damper was different form its performance in vibration experiment.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 848
Author(s):  
Bogdan Sapiński ◽  
Paweł Orkisz ◽  
Łukasz Jastrzębski

The aim of the work is to investigate power flows in the vibration reduction system equipped with a magnetorheological (MR) damper and energy regeneration. For this purpose, experiments were conducted in the test rig compound of the shaker and the vibration reduction system (electromagnetic harvester, MR damper, spring) which are attached to the sprung mass. The experimental data acquired under sine excitations enabled us to analyze instantaneous power fluxes, as well as a rate of inertial energy changes in the system.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yitong Liu ◽  
Yang Yang ◽  
Dingyu Xue ◽  
Feng Pan

PurposeElectricity consumption prediction has been an important topic for its significant impact on electric policies. Due to various uncertain factors, the growth trends of electricity consumption in different cases are variable. However, the traditional grey model is based on a fixed structure which sometimes cannot match the trend of raw data. Consequently, the predictive accuracy is variable as cases change. To improve the model's adaptability and forecasting ability, a novel fractional discrete grey model with variable structure is proposed in this paper.Design/methodology/approachThe novel model can be regarded as a homogenous or non-homogenous exponent predicting model by changing the structure. And it selects the appropriate structure depending on the characteristics of raw data. The introduction of fractional accumulation enhances the predicting ability of the novel model. And the relative fractional order r is calculated by the numerical iterative algorithm which is simple but effective.FindingsTwo cases of power load and electricity consumption in Jiangsu and Fujian are applied to assess the predicting accuracy of the novel grey model. Four widely-used grey models, three classical statistical models and the multi-layer artificial neural network model are taken into comparison. The results demonstrate that the novel grey model performs well in all cases, and is superior to the comparative eight models.Originality/valueA fractional-order discrete grey model with an adaptable structure is proposed to solve the conflict between traditional grey models' fixed structures and variable development trends of raw data. In applications, the novel model has satisfied adaptability and predicting accuracy.


Sign in / Sign up

Export Citation Format

Share Document