inverse dynamic model
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110381
Author(s):  
Mei Zaiwu ◽  
Chen Liping ◽  
Ding Jianwan

A novel feedforward control method of elastic-joint robot based on hybrid inverse dynamic model is proposed in this paper. The hybrid inverse dynamic model consists of analytical model and data-driven model. Firstly, the inverse dynamic analytical model of elastic-joint robot is established based on Lie group and Lie algebra, which improves the efficiency of modeling and calculation. Then, by coupling the data-driven model with the analytical model, a feed-forward control method based on hybrid inverse dynamics model is proposed. This method can overcome the influence of the inaccuracy of the analytical inverse dynamic model on the control performance, and effectively improve the control accuracy of the robot. The data-driven model is used to compensate for the parameter uncertainties and non-parameter uncertainties of the analytical dynamic model. Finally, the proposed control method is proved to be stable and the multi-domain integrated system model of industrial robot is developed to verify the performance of the control scheme by simulation. The simulation results show that the proposed control method has higher control accuracy than the traditional torque feed-forward control method.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5806
Author(s):  
Stefano Alleva ◽  
Michele Gabrio Antonelli ◽  
Pierluigi Beomonte Zobel ◽  
Francesco Durante

Powered ankle-foot prostheses for walking often have limitations in the range of motion and in push-off power, if compared to a lower limb of a healthy person. A new design of a powered ankle-foot prosthesis is proposed to obtain a wide range of motion and an adequate power for a push-off step. The design methodology for this prosthesis has three points. In the first one, a dimensionless kinematic model of the lower limb in the sagittal plane is built, through an experimental campaign with healthy subjects, to calculate the angles of lower limb during the gait. In the second point a multibody inverse dynamic model of the lower limb is constructed to calculate the foot-ground contact force, its point of application and the ankle torque too, entering as input data the calculated angles of the lower limb in the previous point. The third point requires, as input of the inverse dynamic model, the first dimensioning data of the ankle-foot prosthesis to obtain the load acting on the components of the prosthesis and the angle torque of the actuator during the gait cycle. Finally, an iteration cycle begins with the inverse dynamic model modifying the ankle torque and angle until these quantities during the gait are as close as possible to the physiological quantities. After the mechanical design and the construction of the prototype of the prosthesis, an experimental methodology was used for preliminary validation of the design. The preliminary tests in the laboratory on the prototype alone show that the range of motion of the ankle angle during the gait is close to a healthy person’s: 27.6° vs. 29°. The pushing force of the distal area of the prototype is 1.000 N, instead of 1.600 N, because a budget reduction forced us to choose components for the prototype with lower performance.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1849
Author(s):  
Jianbo Liu ◽  
Rongqiang Guan ◽  
Yongming Yao ◽  
Hui Wang ◽  
Linqiang Hu

In this paper, we propose a novel kinematic and inverse dynamic model for the flybar-less (FBL) swashplate mechanism of a small-scale unmanned helicopter. The swashplate mechanism is an essential configuration of helicopter flight control systems. It is a complex, multi-loop chain mechanism that controls the main rotor. In recent years, the demand for compact swashplate designs has increased owing to the development of small-scale helicopters. The swashplate mechanism proposed in this paper is the latest architectures used for hingeless rotors without a Bell-Hiller mixer. Firstly, the kinematic analysis is derived from the parallel manipulators concepts. Then, based on the principle of virtual work, a methodology for deriving a closed-form dynamic equation of the FBL swashplate mechanism is developed. Finally, the correctness and efficiency of the presented analytical model are demonstrated by numerical examples and the influence factors of the loads acted on actuators are discussed.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Jianfeng Li ◽  
Shiping Zuo ◽  
Leiyu Zhang ◽  
Mingjie Dong ◽  
Zikang Zhang ◽  
...  

Abstract As the population ages, increasingly more individuals experience ankle disabilities caused by stroke and cerebral palsy. Studies on parallel robots for ankle rehabilitation have been conducted under this circumstance. This paper presents a novel parallel ankle rehabilitation robot with the key features of a simple configuration and actuator nonredundancy. The mechanical design is determined, and a prototype is built. Additionally, inverse position solution is addressed to calculate the workspace of the parallel robot. Jacobian matrices mapping the velocity and force from the active joint space to the task space are derived, and kinetostatic performance indices, namely, motion isotropy, force transfer ratio, and force isotropic radius are defined. Moreover, the inverse dynamic model is presented using the Newton–Euler formulation. Dynamic evaluation index, i.e., dynamic uniformity, is proposed according to the derived Jacobian matrix and inertia matrix. Based on the workspace analysis, the parallel robot demonstrates a sufficient workspace for ankle rehabilitation compared with measured range of motion of human ankle joint complex. The results of the kinetostatic and dynamic performance analysis indicate that the parallel robot possesses good motion isotropy, high force transfer ratio, large force isotropic radius, and relatively uniform dynamic dexterity within most of the workspace, especially in the central part. A numerical example is presented to simulate the rehabilitation process and verify the correctness of the inverse dynamic model. The simplicity and the performance of the proposed robot indicate that it has the potential to be widely used for ankle rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document