scholarly journals A Correlational Study between Microstructural White Matter Properties and Macrostructural Gray Matter Volume Across Normal Ageing: Conjoint DTI and VBM Analysis

2018 ◽  
Vol 11 ◽  
pp. 1178623X1879992 ◽  
Author(s):  
Vikas Pareek ◽  
VP Subramanyam Rallabandi ◽  
Prasun K Roy

We investigate the relationship between Gray matter’s volume vis-a-vis White matter’s integrity indices, such Axial diffusivity, Radial diffusivity, Mean diffusivity, and Fractional anisotropy, in individuals undergoing healthy aging. We investigated MRI scans of 177 adults across 20 to 85 years. We used Voxel-based morphometry, and FDT-FSL analysis for estimation of Gray matter volume and White matter’s diffusion indices respectively. Across the life span, we observed an inter-relationship between the Gray matter and White matter, namely that both Axial diffusivity and Mean Diffusivity show strong correlation with Gray matter volume, along the aging process. Furthermore, across all ages the Fractional anisotropy and Mean diffusivity are found to be significantly reduced in females when compared to males, but there are no significant gender differences in Axial Diffusivity and Radial diffusivity. We conclude that for both genders across all ages, the Gray matter’s Volume is strongly correlated with White matter’s Axial Diffusivity and Mean Diffusivity, while being weakly correlated with Fractional Anisotropy. Our study clarifies the multi-scale relationship in brain tissue, by elucidating how the White matter’s micro-structural parameters influences the Gray matter’s macro-structural characteristics, during healthy aging across the life-span.

2014 ◽  
Vol 11 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Jos Bloemers ◽  
H. Steven Scholte ◽  
Kim van Rooij ◽  
Irwin Goldstein ◽  
Jeroen Gerritsen ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  

Author(s):  
Mary Clare McKenna ◽  
Rangariroyashe H. Chipika ◽  
Stacey Li Hi Shing ◽  
Foteini Christidi ◽  
Jasmin Lope ◽  
...  

AbstractThe contribution of cerebellar pathology to cognitive and behavioural manifestations is increasingly recognised, but the cerebellar profiles of FTD phenotypes are relatively poorly characterised. A prospective, single-centre imaging study has been undertaken with a high-resolution structural and diffusion tensor protocol to systematically evaluate cerebellar grey and white matter alterations in behavioural-variant FTD(bvFTD), non-fluent variant primary progressive aphasia(nfvPPA), semantic-variant primary progressive aphasia(svPPA), C9orf72-positive ALS-FTD(C9 + ALSFTD) and C9orf72-negative ALS-FTD(C9-ALSFTD). Cerebellar cortical thickness and complementary morphometric analyses were carried out to appraise atrophy patterns controlling for demographic variables. White matter integrity was assessed in a study-specific white matter skeleton, evaluating three diffusivity metrics: fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Significant cortical thickness reductions were identified in: lobule VII and crus I in bvFTD; lobule VI VII, crus I and II in nfvPPA; and lobule VII, crus I and II in svPPA; lobule IV, VI, VII and Crus I and II in C9 + ALSFTD. Morphometry revealed volume reductions in lobule V in all groups; in addition to lobule VIII in C9 + ALSFTD; lobule VI, VIII and vermis in C9-ALSFTD; lobule V, VII and vermis in bvFTD; and lobule V, VI, VIII and vermis in nfvPPA. Widespread white matter alterations were demonstrated by significant fractional anisotropy, axial diffusivity and radial diffusivity changes in each FTD phenotype that were more focal in those with C9 + ALSFTD and svPPA. Our findings indicate that FTD subtypes are associated with phenotype-specific cerebellar signatures with the selective involvement of specific lobules instead of global cerebellar atrophy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Cesar D. Pineda ◽  
Keisuke Kokubun ◽  
Toshiharu Ikaga ◽  
Yoshinori Yamakawa

AbstractCountless studies in animals have shown how housing environments and behaviors can significantly affect anxiety and brain health, giving valuable insight as to whether this is applicable in the human context. The relationship between housing, behavior, brain health, and mental wellbeing in humans remains poorly understood. We therefore explored the interaction of housing quality, weekend/holiday sedentary behavior, brain structure, and anxiety in healthy Japanese adults. Whole-brain structural magnetic resonance imaging (MRI) methods based on gray matter volume and fractional anisotropy were used as markers for brain health. Correlation tests were conducted, and then adjusted for multiple comparisons using the False Discovery Rate method. Housing quality and weekend/holiday sedentary behavior were associated with fractional anisotropy, but not with gray matter volume. Fractional anisotropy showed significant associations with anxiety. Lastly, both weekend/holiday sedentary behavior and housing quality were indirectly associated with anxiety through fractional anisotropy. These results add to the limited evidence surrounding the relationship among housing, behavior, and the brain. Furthermore, these results show that behavior and housing qualities can have an indirect impact on anxiety through neurobiological markers such as fractional anisotropy.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012869
Author(s):  
Raffaello Bonacchi ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Olga Marchesi ◽  
Andrea Falini ◽  
...  

Objective:To investigate whether age at onset influences brain gray matter volume (GMV) and white matter (WM) microstructural abnormalities in adult multiple sclerosis (MS) patients, given its influence on clinical phenotype and disease course.Method:In this hypothesis-driven cross-sectional study, we enrolled 67 pediatric-onset MS (POMS) patients and 143 sex- and disease duration (DD)-matched randomly-selected adult-onset MS (AOMS) patients, together with 208 healthy controls. All subjects underwent neurological evaluation and 3T MRI acquisition. MRI variables were standardized based on healthy controls, to remove effects of age and sex. Associations with DD in POMS and AOMS patients were studied with linear models. Time to reach clinical and MRI milestones was assessed with product-limit approach.Results:At DD=1 year, GMV and WM fractional anisotropy (FA) were abnormal in AOMS but not in POMS patients. Significant interaction of age at onset (POMS vs AOMS) into the association with DD was found for GMV and WM FA. The crossing point of regression lines in POMS and AOMS patients was at 20 years of DD for GMV and 14 for WM FA. For POMS and AOMS patients, median DD was 29 and 19 years to reach Expanded Disability Status Scale=3 (p<0.001), 31 and 26 years to reach abnormal Paced Auditory Serial Addition Task-3 (p=0.01), 24 and 18 years to reach abnormal GMV (p=0.04), and 19 and 17 years to reach abnormal WM FA (p=0.36).Conclusions:Younger patients are initially resilient to MS-related damage. Then, compensatory mechanisms start failing with loss of WM integrity, followed by GM atrophy and finally disability.


Neurology ◽  
2018 ◽  
Vol 92 (1) ◽  
pp. e30-e39 ◽  
Author(s):  
Meher R. Juttukonda ◽  
Giulia Franco ◽  
Dario J. Englot ◽  
Ya-Chen Lin ◽  
Kalen J. Petersen ◽  
...  

ObjectiveTo assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.MethodsSedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.ResultsFractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05).ConclusionsRegionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.


2018 ◽  
Vol 32 (1) ◽  
pp. 10-16
Author(s):  
Alexander Rau ◽  
Elias Kellner ◽  
Niels A Foit ◽  
Niklas Lützen ◽  
Dieter H Heiland ◽  
...  

The aim of this study was to evaluate whether ganglioglioma (GGL), dysembryoplastic neuroepithelial tumour (DNET) and FCD (focal cortical dysplasia) are distinguishable through diffusion tensor imaging. Additionally, it was investigated whether the diffusion measures differed in the perilesional (pNAWM) and in the contralateral normal appearing white matter (cNAWM). Six GGLs, eight DNETs and seven FCDs were included in this study. Quantitative diffusion measures, that is, axial, radial and mean diffusivity and fractional anisotropy, were determined in the lesion identified on isotropic T2 or FLAIR-weighted images and in pNAWM and cNAWM, respectively. DNET differed from FCD in mean diffusivity, and GGL from FCD in radial diffusivity. Both types of glioneuronal tumours were different from pNAWM in fractional anisotropy and radial diffusivity. For identifying the tumour edges, threshold values for tumour-free tissue were investigated with receiver operating characteristic analyses: tumour could be separated from pNAWM at a threshold ≤ 0.32 (fractional anisotropy) or ≥ 0.56 (radial diffusivity) *10–3 mm2/s (area under the curve 0.995 and 0.990 respectively). While diffusion parameters of FCDs differed from cNAWM (radial diffusivity (*10–3 mm/s2): 0.74 ± 0.19 vs. 0.43 ± 0.05; corrected p-value < 0.001), the pNAWM could not be differentiated from the FCD.


Sign in / Sign up

Export Citation Format

Share Document