MOG extracellular domain (p1–125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE

2014 ◽  
Vol 20 (10) ◽  
pp. 1312-1321 ◽  
Author(s):  
Jyothi T Mony ◽  
Reza Khorooshi ◽  
Trevor Owens

Background: Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-like domain of myelin oligodendrocyte glycoprotein (MOGIgd, residues 1–125) might induce distinct CD4+ T-cell response and/or a stronger CD8+ T-cell response, compared to the 21 amino acid immunodominant MHC II-associating peptide (p35–55). Objectives: Compare both EAE and T-cell responses in C57BL/6 mice immunized with MOGIgd and MOG p35–55. Methods: Cytokine production, and chemokine receptor expression by CD4+ and CD8+ T cells in the mouse central nervous system (CNS), were analyzed by flow cytometry. Results: MOGIgd triggered progression to more severe EAE than MOG p35–55, despite similar time of onset and overall incidence. EAE in MOGIgd-immunized mice was characterized by an increased percentage of CXCR3+ interferon-γ-producing CD4+ T cells in CNS. The CD8+ T-cell response to both immunogens was similar. Conclusions: Increased incidence of severe disease following MOGIgd immunization, accompanied by an increased percentage of CD4+ T cells in the CNS expressing CXCR3 and producing interferon-γ, identifies a pathogenic role for interferon-γ that is not seen when disease is induced with a single Major Histocompatibility Complex (MHC) II-associating epitope.

2007 ◽  
Vol 178 (9) ◽  
pp. 5465-5472 ◽  
Author(s):  
Eleni Adamopoulou ◽  
Jan Diekmann ◽  
Eva Tolosa ◽  
Gaby Kuntz ◽  
Hermann Einsele ◽  
...  

2008 ◽  
Vol 181 (2) ◽  
pp. 1071-1082 ◽  
Author(s):  
Yanling Xiao ◽  
Victor Peperzak ◽  
Anna M. Keller ◽  
Jannie Borst

Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2686-2692 ◽  
Author(s):  
Laila E. Gamadia ◽  
Ester B. M. Remmerswaal ◽  
Jan F. Weel ◽  
Frederieke Bemelman ◽  
René A. W. van Lier ◽  
...  

The correlates of protective immunity to disease-inducing viruses in humans remain to be elucidated. We determined the kinetics and characteristics of cytomegalovirus (CMV)–specific CD4+ and CD8+ T cells in the course of primary CMV infection in asymptomatic and symptomatic recipients of renal transplants. Specific CD8+ cytotoxic T lymphocyte (CTL) and antibody responses developed regardless of clinical signs. CD45RA−CD27+CCR7− CTLs, although classified as immature effector cells in HIV infection, were the predominant CD8 effector population in the acute phase of protective immune reactions to CMV and were functionally competent. Whereas in asymptomatic individuals the CMV-specific CD4+ T-cell response preceded CMV-specific CD8+T-cell responses, in symptomatic individuals the CMV-specific effector-memory CD4+ T-cell response was delayed and only detectable after antiviral therapy. The appearance of disease symptoms in these patients suggests that functional CD8+ T-cell and antibody responses are insufficient to control viral replication and that formation of effector-memory CD4+ T cells is necessary for recovery of infection.


2014 ◽  
Vol 88 (14) ◽  
pp. 7862-7869 ◽  
Author(s):  
Michael L. Freeman ◽  
Alan D. Roberts ◽  
Claire E. Burkum ◽  
David L. Woodland ◽  
Marcia A. Blackman

ABSTRACTCD8 and CD4 T cells are each critically important for immune control of murine gammaherpesvirus 68 (γHV68) infection. In immunocompetent mice, acute γHV68 infection results in lifelong latency, but in the absence of CD4 T cell help, mice succumb to viral recrudescence and disease. However, the requirements for CD4 T cell help in the generation and maintenance of antiviral CD8 T cell responses are incompletely understood, and it is unclear whether there are epitope-specific differences in the requirement of CD8 T cells for CD4 help. In this report, we characterized the CD8 T cell response to γHV68 in major histocompatibility complex (MHC) class II−/−mice, which lack CD4 T cells, or after antibody-mediated depletion of CD4 T cells. All antiviral CD8 T cells exhibited marked upregulation of surface expression of the inhibitory receptor programmed death-1 (PD-1), but surprisingly, while the immunodominant memory response appeared to be functionally impaired, helpless CD8 T cells of a subdominant specificity had increased numbers and enhanced functionality. Thus, we demonstrate differential requirements for CD4 help in the antiviral CD8 T cell response to a latent gammaherpesvirus.IMPORTANCEγHV68 is a mouse pathogen closely related to the oncogenic human γHVs, which infect a majority of the world's population. Reactivation of these viruses from latency can lead to complications, disease, and even death. CD4 T cells are required for complete immune control of long-term infection, in part by providing key signals to dendritic cells that in turn instruct optimal antiviral CD8 T cell responses. We have investigated multiple virus-specific CD8 T cell responses during infection and identified a subdominant CD8 T cell response that is numerically and functionally enhanced in the absence of CD4 T cell help. This occurs in spite of high surface expression of an inhibitory receptor and in contrast to the immunodominant response, which is impaired. Our data suggest that signals from CD4 T cells are important in maintaining the CD8 T cell hierarchy during γHV infections.


Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2153-2158 ◽  
Author(s):  
Emmanuel Hermann ◽  
Carine Truyens ◽  
Cristina Alonso-Vega ◽  
Jos Even ◽  
Patricia Rodriguez ◽  
...  

Abstract Fetal/neonatal immune responses generally are considered to be immature and weaker than that of adults. We have studied the cord-blood T cells of newborns congenitally infected with Trypanosoma cruzi, the protozoan agent of Chagas disease. Our data demonstrate a predominant activation of CD8 T cells expressing activation markers and armed to mediate effector functions. The analysis of the T-cell receptor beta chain variable repertoire shows the oligoclonal expansion of these T lymphocytes, indicating that activation was driven by parasite antigens. Indeed, we have detected parasite-specific CD8 T cells secreting interferon-γ after coincubation with live T cruzi. This response is enhanced in the presence of recombinant interleukin-15, which limits the T-cell spontaneous apoptosis. These findings point out that the fetal immune system is more competent than previously appreciated, since fetuses exposed to live pathogens are able to develop an adultlike immune CD8 T-cell response.


2013 ◽  
Vol 210 (8) ◽  
pp. 1591-1601 ◽  
Author(s):  
André Ballesteros-Tato ◽  
Beatriz León ◽  
Frances E. Lund ◽  
Troy D. Randall

CD4+ T cells promote CD8+ T cell priming by licensing dendritic cells (DCs) via CD40–CD154 interactions. However, the initial requirement for CD40 signaling may be replaced by the direct activation of DCs by pathogen-derived signals. Nevertheless, CD40–CD154 interactions are often required for optimal CD8+ T cell responses to pathogens for unknown reasons. Here we show that CD40 signaling is required to prevent the premature contraction of the influenza-specific CD8+ T cell response. CD40 is required on DCs but not on B cells or T cells, whereas CD154 is required on CD4+ T cells but not CD8+ T cells, NKT cells, or DCs. Paradoxically, even though CD154-expressing CD4+ T cells are required for robust CD8+ T cell responses, primary CD8+ T cell responses are apparently normal in the absence of CD4+ T cells. We resolved this paradox by showing that the interaction of CD40-bearing DCs with CD154-expressing CD4+ T cells precludes regulatory T cell (T reg cell)–mediated suppression and prevents premature contraction of the influenza-specific CD8+ T cell response. Thus, CD4+ T helper cells are not required for robust CD8+ T cell responses to influenza when T reg cells are absent.


Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2153-2158
Author(s):  
Emmanuel Hermann ◽  
Carine Truyens ◽  
Cristina Alonso-Vega ◽  
Jos Even ◽  
Patricia Rodriguez ◽  
...  

Fetal/neonatal immune responses generally are considered to be immature and weaker than that of adults. We have studied the cord-blood T cells of newborns congenitally infected with Trypanosoma cruzi, the protozoan agent of Chagas disease. Our data demonstrate a predominant activation of CD8 T cells expressing activation markers and armed to mediate effector functions. The analysis of the T-cell receptor beta chain variable repertoire shows the oligoclonal expansion of these T lymphocytes, indicating that activation was driven by parasite antigens. Indeed, we have detected parasite-specific CD8 T cells secreting interferon-γ after coincubation with live T cruzi. This response is enhanced in the presence of recombinant interleukin-15, which limits the T-cell spontaneous apoptosis. These findings point out that the fetal immune system is more competent than previously appreciated, since fetuses exposed to live pathogens are able to develop an adultlike immune CD8 T-cell response.


Sign in / Sign up

Export Citation Format

Share Document