Fracture behaviors of HVFA-SCC mixed with seawater and sea-sand under three-point bending

2022 ◽  
pp. 136943322110273
Author(s):  
Lingzhu Zhou ◽  
Yu Zheng ◽  
Linsheng Huo ◽  
Yuxiao Ye ◽  
Xiaolu Wang ◽  
...  

This paper aims to study the fracture behaviors of high-volume fly ash-self-compacting concrete (HVFA-SCC) mixed with seawater and sea-sand (SWSS) or freshwater and river sand (FWRS). Three-point bending test were performed on 24 notched beams fabricated with varying in replacement ratio of fly ash (0%, 30%, 50%, and 70%) and the type of water and sand (SWSS and FWRS). The initial and unstable fracture toughness of these test specimens are determined by the double- K fracture model. The effect of fly ash replacement ratio and type of water and sand on the fracture parameters is analyzed and discussed. In addition, the cohesive fracture toughness of all the test specimens is calculated by using Gauss–Chebyshev integral method and the weight function method based on the bilinear tensile softening curve given in CEP-FIP Model Code. A comparison of fracture toughness parameters of determined from the experimental approach and analytical approaches is presented in these SCC specimens. Results show that SCC mixed with SWSS replacing FWRS can improve the unstable fracture toughness and fracture energy, and decrease its brittleness behavior. The cohesive fracture toughness of SWSS-SCC specimens is underestimated by these analytical methods based on the tensile softening curve given in CEP-FIP Model Code.

2006 ◽  
Vol 512 ◽  
pp. 67-72 ◽  
Author(s):  
Koji Hagihara ◽  
Naoyuki Yokotani ◽  
Yukichi Umakoshi

Fracture behaviors of three directionally solidified (DS) duplex-phase alloys composed of Ni3Nb(D0a)/Ni3Al(L12), Ni6TaAl(D024)/Ni3Al(L12) and Ni3Ti(D024)/Ni3Si(L12) phases, respectively were investigated by three-point bending tests, focusing on temperature and orientation dependence. The temperature-toughness relation showed dissimilar curves depending on alloy. The increasing rate of fracture toughness was the highest in the Ni3Al/Ni3Nb alloy with fine lamellar structure and was the lowest in the Ni3Al/Ni6TaAl alloy with rod-like precipitates. The controlling mechanism for the temperature dependence of fracture behavior of Ni3Al/Ni3Nb alloys was discussed.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 741 ◽  
Author(s):  
Qin ◽  
Lu ◽  
He ◽  
Qi ◽  
Li ◽  
...  

In view of the accidents such as rock mass breakage, roof fall and coal slide in coal mines, polyurethane/mesoscopic fly ash (PU/MFA) reinforcement materials were produced from polymethylene polyphenylene isocyanate (PAPI), the polyether polyol, flame retardant, and MFA using stannous octanate as a catalyst. 3-Glycidoxypropyltrimethoxysilane (GPTMS) was grafted on MFA surface, aiming to improve the mechanical properties of PU/MFA composites. The analyses of infrared spectroscopy and compression resistance reveal that the GPTMS can be successfully attached to the surface of MFA, and the optimum modification dosage of GPTMS to MFA is 2.5 wt % (weight percent). On this basis, the effect of GPTMS on the mechanical properties of PU/MFA reinforcement materials during the curing process was systematically investigated through a compression test, a fracture toughness test, a three-point bending test, a bond property test, and a dynamic mechanics analysis. The results show that the compression property, fracture toughness, maximum flexural strength, and bond strength of PU/MFA composites increase by 21.6%, 10.1%, 8.8%, and 19.3%, respectively, compared with the values before the modification. Furthermore, the analyses of scanning electron microscope and dynamic mechanics suggest that the coupling agent GPTMS can successfully improve the mechanical properties of PU/MFA composites because it eliminates the stress concentration and exerts a positive effect on the crosslink density and hardness of PU/MFA composites.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jian Li ◽  
Zhao-Wen Du ◽  
Zhong-Ping Guo ◽  
De-Chun Ai

This paper investigates the unstable fracture toughness of specimens of different heights using the double-K model for three-point bending tests on notched concrete beams. It is shown that unstable fracture toughness exhibits a significant size effect. The modified maximum tangential stress (MMTS) criterion is used to explain the size effect of unstable fracture toughness. The MMTS criterion considers the higher order terms of the Williams series expansion of the stress field. The results show that the MMTS criterion can reasonably estimate unstable fracture toughness. It is recommended that the minimum height of the specimen be 200 mm when three-point bending tests on notched beams are used to determine unstable fracture toughness.


2014 ◽  
Vol 904 ◽  
pp. 232-235
Author(s):  
Long Bang Qing ◽  
Huan Huan Liu

The effects of tensile softening curve parameters on the crack propagation P-CMOD and P-CTOD curves were analyzed using a calculation method which adopted the initial fracture toughness as the crack propagation criterion. The results showed that: the whole process of the P-CMOD and P-CTOD curves were affected by the tensile softening curve parameters, especially for the descending segment of the curves, but the peak load and critical crack mouth opening displacement were less affected.


2013 ◽  
Vol 641-642 ◽  
pp. 574-577 ◽  
Author(s):  
Ying Tao Li ◽  
Ling Zhou ◽  
Mao Jiang ◽  
Yu Zhang ◽  
Jun Shao

In this paper, the mechanical property experiments of concrete based on the seawater and sea sand have been carried in different raw materials preparation and different conservation environments. The results show that the early strength and late strength of concrete based on seawater and sea sand are better than concrete based on freshwater and sand. There is no significant strength decreased for concrete based on seawater and sea sand under accelerated alternating wet and dry conditions. For concrete based on seawater and sea sand mixed with admixture, the downward trend of late strength is significantly delayed, the late strength of concrete based on the seawater and sea sand mixed with slag gets the most obvious growth trend, while the late strength of seawater and sea sand concrete mixed with fly ash gets the largest increment.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Grzegorz Ludwik Golewski ◽  
Damian Marek Gil

This paper presents the results of the fracture toughness of concretes containing two mineral additives. During the tests, the method of loading the specimens according to Mode I fracture was used. The research included an evaluation of mechanical parameters of concrete containing noncondensed silica fume (SF) in an amount of 10% and siliceous fly ash (FA) in the following amounts: 0%, 10% and 20%. The experiments were carried out on mature specimens, i.e., after 28 days of curing and specimens at an early age, i.e., after 3 and 7 days of curing. In the course of experiments, the effect of adding SF to the value of the critical stress intensity factor—KIcS in FA concretes in different periods of curing were evaluated. In addition, the basic strength parameters of concrete composites, i.e., compressive strength—fcm and splitting tensile strength—fctm, were measured. A novelty in the presented research is the evaluation of the fracture toughness of concretes with two mineral additives, assessed at an early age. During the tests, the structures of all composites and the nature of macroscopic crack propagation were also assessed. A modern and useful digital image correlation (DIC) technique was used to assess macroscopic cracks. Based on the conducted research, it was found the application of SF to FA concretes contributes to a significant increase in the fracture toughness of these materials at an early age. Moreover, on the basis of the obtained test results, it was found that the values of the critical stress intensity factor of analyzed concretes were convergent qualitatively with their strength parameters. It also has been demonstrated that in the first 28 days of concrete curing, the preferred solution is to replace cement with SF in the amount of 10% or to use a cement binder substitution with a combination of additives in proportions 10% SF + 10% FA. On the other hand, the composition of mineral additives in proportions 10% SF + 20% FA has a negative effect on the fracture mechanics parameters of concretes at an early age. Based on the analysis of the results of microstructural tests and the evaluation of the propagation of macroscopic cracks, it was established that along with the substitution of the cement binder with the combination of mineral additives, the composition of the cement matrix in these composites changes, which implies a different, i.e., quasi-plastic, behavior in the process of damage and destruction of the material.


2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 1-9
Author(s):  
Thinh Duc Ta ◽  
Phuc Dinh Hoang ◽  
Thang Anh Bui ◽  
Trang Huong Thi Ngo ◽  
Diu Thi Nguyen ◽  
...  

Sea sand-cement-fly ash column technology for soft soil treatment is a new technology in the process of completing the theoretical basis, the experimental basis, and the construction of the ground treatment technological procedure. The paper presents the results of scientific research on design, calculation, construction, and acceptance of sea sand-cement-fly ash column. The scientific basis for the design of column is to consider the role of the column in composite ground, that is to use the column as soft ground improvement or soft soil reinforcement. The important parameters for the column design are: cement and fly ash content; column length; column diameter; number of columns; distance among columns; load capacity and settlement of composite ground. The sequence of steps of construction and acceptance of column includes: selection of construction equipment, preparation of construction sites, trial construction, official construction, evaluation of ground quality after treatment and preparation of document for acceptance.


2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


Sign in / Sign up

Export Citation Format

Share Document