Structural investigation of steel-reinforced epoxy granite machine tool column by finite element analysis

Author(s):  
Prabhu Raja Venugopal ◽  
M Kalayarasan ◽  
PR Thyla ◽  
PV Mohanram ◽  
Mahendrakumar Nataraj ◽  
...  

Higher damping with higher static stiffness is essential for improving the static and dynamic characteristics of machine tool structures. The structural vibration in conventional machine tools, which are generally made up of cast iron and cast steel, may lead to poor surface finish and the dimensional inaccuracy in the machined products. It leads to the investigation of alternative machine tool structural materials such as concrete, polymer concrete, and epoxy granite. Although epoxy granite has a better damping capacity, its structural stiffness (Young's modulus) is one-third as compared to cast iron. Therefore, the present work represents optimization of the structural design of the vertical machining center column by introducing various designs of steel reinforcement in the epoxy granite structure to improve its static and dynamic characteristics using experimental and numerical approaches. A finite element model of the existing cast iron vertical machining center column has been developed and validated against the experimental data obtained using modal analysis. Furthermore, finite element models for various epoxy granite column designs have been developed and compared with the static and dynamic characteristics of cast iron column. A total of nine design configurations for epoxy granite column with steel reinforcement are evolved and numerical investigations are carried out by finite element analysis. The proposed final configuration with standard steel sections has been modeled using finite element analysis for an equivalent static stiffness and natural frequencies of about 12–20% higher than cast iron structure. Therefore, the proposed finite element model of epoxy-granite-made vertical machining center column can be used as a viable alternative for the existing column in order to achieve higher structural damping, equivalent or higher static stiffness and, easy and environmental-friendly manufacturing process.

Author(s):  
Shanmugam Chinnuraj ◽  
PR Thyla ◽  
S Elango ◽  
Prabhu Raja Venugopal ◽  
PV Mohanram ◽  
...  

Machine tools are used to manufacture components with desired size, shape, and surface finish. The accuracy of machining is influenced by stiffness, structural damping, and long-term dimensional stability of the machine tool structures. Components machined using such machines exhibit more dimensional variations because of the excessive vibration during machining at higher speeds. Compared to conventional materials like cast iron, stone-based polymer composites such as epoxy granite have been found to provide improved damping characteristics, by seven to ten folds, due to which they are being considered for machine tool structures as alternate materials. The stiffness of structures made of epoxy granite can be enhanced by reinforcing with structural steel. The current work highlights the design and analysis of different steel reinforcements in the lathe bed made of the epoxy granite composite to achieve equivalent stiffness to that of cast iron bed for improved static and dynamic performances of the CNC lathe. A finite element model of the existing the cast iron bed was developed to evaluate the static (torsional rigidity) and dynamic characteristics (natural frequency) and the results were validated using the experimental results. Then finite element models of five different steel reinforcement designs of the epoxy granite bed were developed, and their static and dynamic behaviors were compared with the cast iron bed through numerical simulation using finite element analysis. The proposed design (Design-5) of the epoxy granite bed is found to have an improvement in dynamic characteristics by 4–10% with improved stiffness and offers a mass reduction of 22% compared to the cast iron bed, hence it can be used for the manufacture of the CNC lathe bed and other machine tool structures for enhanced performance.


Author(s):  
N Mahendrakumar ◽  
PR Thyla ◽  
PV Mohanram ◽  
C Raja Kumaran ◽  
J Jayachandresh

Nowadays, natural fibre-reinforced composites find applications in almost all engineering fields. This work is an attempt to realise improvement in dynamic characteristics of micro lathe bed using Himalayan nettle (Girardinia heterophylla) polyester (NP) composite as an alternate material. In order to study and validate the improvements envisaged, a cast iron micro lathe bed is considered as reference. Numerical (FE) model of the cast iron micro lathe bed was developed and validated through experimental static and modal analysis. Finite element analysis of the micro lathe bed with the existing cast iron material as well as with nettle–polyester composite as alternate material was also carried out using worst case cutting forces, and based on the relative performances, the need for form design modification for the proposed material was identified. To enhance the bending and torsional stiffness of the nettle–polyester composite lathe bed, various cross sections and rib configurations were studied and the best among them was identified and the same was implemented in the nettle–polyester composite micro lathe bed design. Finite element analysis of the newly designed nettle–polyester composite micro lathe bed was performed and the improvements in dynamic characteristics were evaluated. The newly designed nettle–polyester composite micro lathe bed was fabricated and the predicted enhancement in static and dynamic characteristics was verified experimentally. The studies indicated that nettle–polyester composite could be considered as a suitable alternate to cast iron structures in machine tools.


Author(s):  
Prabhu Raja Venugopal ◽  
P Dhanabal ◽  
PR Thyla ◽  
S Mohanraj ◽  
Mahendrakumar Nataraj ◽  
...  

The structural vibration in conventional machine tools which are generally made of cast iron may lead to poor surface finish of the machined components. This has led to the investigations on alternative materials for machine tool structures such as concrete, polymer concrete and epoxy granite which have higher damping properties but lesser Young's modulus. However, higher static stiffness with higher damping is essential for improving the static and dynamic characteristics of machine tool structures. Hence, this work focuses on replacing the vertical machining centre base made of cast iron with steel reinforced epoxy granite to improve the structural static stiffness. A finite element model of the above base is developed and validated against the experimental data obtained using modal analysis. The validated numerical approach is applied for investigating the seven progressive design configurations of base reinforced with steel. It is found that the epoxy granite base of Design configuration-7 with L-channels has significantly reduced the deformation by 56 and 36% considering milling and drilling operations, respectively, in comparison to cast iron base. Further, the natural frequencies of the above configuration are higher in all the modes (by more than 50%) under consideration than those of the existing cast iron structure. Therefore, the proposed configuration of base is a viable alternative for the existing base in order to achieve higher structural damping. The novelty of the present work is the design of epoxy granite vertical machining centre base using steel reinforcements to improve structural rigidity with ease of manufacturing.


2014 ◽  
Vol 543-547 ◽  
pp. 76-79
Author(s):  
Ting Ting Guo ◽  
Teng Jiao Sun ◽  
Fang Shao

Taking a grinding machine tool as an example, this paper obtained the static stiffness of the machine tool by finite element analysis method. The structure and technical parameters of the machine tool were introduced at first.Then, the finite element model of the machine tool was established. The static stiffness of the machine tool in x-, y-, and z-directions were simulated at last. The results show that, the static stiffness in x-direction is 2.0062×107 N/m, the static stiffness in y-direction is 0.821×107 N/m, and the static stiffness in z-direction is 0.2992×107 N/m. This paper provides advices for structure optimization of the machine tool which is convenient for improving the machining accuracy.


2004 ◽  
Vol 126 (2) ◽  
pp. 353-359 ◽  
Author(s):  
G. H. Jang ◽  
K. S. Kim ◽  
H. S. Lee ◽  
C. S. Kim

This paper presents a method to investigate the characteristics of hydrodynamic bearings of a HDD spindle motor considering the variation of the clearance as well as the lubricant viscosity due to elevated temperature. Iterative finite element analysis of heat conduction and thermal deformation is performed to determine the viscosity and clearance of hydrodynamic bearings at elevated temperature until the temperature in the bearing area converges. The proposed method is verified by comparing the calculated temperature with the measured one at elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearings of a HDD spindle motor. Once the viscosity and clearance of hydrodynamic bearings of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of hydrodynamic bearings of a HDD spindle motor at elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration which affects the static and dynamic characteristics of the hydrodynamic bearings of a HDD spindle motor.


2013 ◽  
Vol 712-715 ◽  
pp. 1391-1394
Author(s):  
Zhi Li ◽  
X. S. Zhao ◽  
D. W. Zhang

Modal analysis is one way of studying the dynamic characteristics of the mechanical. In order to study the dynamic characteristics of machine tool,numerical machine model is set up with finite element analysis software,of which validity is verified by experimental modal analysis.The experimental test also provide the boundary conditions, so as to further structure modification and dynamic characteristic design


2013 ◽  
Vol 770 ◽  
pp. 54-58 ◽  
Author(s):  
Ming Jun Chen ◽  
Lin Yu ◽  
He Nan Liu ◽  
Wan Qun Chen

The dynamic characteristics of machine tool directly affect machining accuracy of the final parts. Taking the self-developed HRG ultra-precision polishing CNC machine tool as the research object, the simplified finite element model is established with the finite element analysis software to do the dynamic analysis and the natural frequency is detected as the index of the dynamic performances. Based on the comparative analysis of the natural frequency and vibration modes, the gantry and the supporting frame are recognized as structural weaknesses of the machine tool, and then the modal test is done to verify simulation results. Eventually the structural weaknesses are optimized effectively. The 1st order nature frequency of the optimized gantry and the optimized supporting frame is increased 75.5% and 80.8% respectively so that they have better dynamic performances, resulting in offering higher workpiece quality and process stability.


2014 ◽  
Vol 889-890 ◽  
pp. 58-61 ◽  
Author(s):  
Peng Wang ◽  
Yan Rui Zuo ◽  
Li Na Ren ◽  
Dong Dong Song

Based on the theory of finite element and modal analysis theory, analysis of static and dynamic characteristics of the lathe bed has been done. The static displacement contours and mode natural frequency and displacement contours have been given to realize the structure optimization of lathe bed of high-speed horizontal machining center. It is shown that the bed has good static stiffness and natural frequency and the deformation of lathe bed mainly occurred in the tray conversion mechanism and the cutter location. The deformation of processing work area is small and has certain light weight space, which lay the foundation for the lightweight design of the bed.


2011 ◽  
Vol 121-126 ◽  
pp. 3294-3298 ◽  
Author(s):  
Meng Jiao ◽  
Xu Hong Guo ◽  
Dong Dong Wan

Taking the bed of a large machine tool as an example, static stiffness and modal analysis were studied by the software HyperWorks. Based on the results of the finite element analysis the structural topology optimization of the bed was compiled, with the optimization target is minimum volume of the rib plate and the bed constraint conditions are stiffness and natural frequency. The lightest topology shape of the bed was obtained in the premise of its stiffness and strength which can provide the guidance for the next precise design of the structure. The results showed that the mass of the bed was reduced by 8.58% while the stiffness improved 7.41%.


Sign in / Sign up

Export Citation Format

Share Document