scholarly journals Control-oriented premixed charge compression ignition CA50 model for a diesel engine utilizing variable valve actuation

2016 ◽  
Vol 18 (8) ◽  
pp. 847-857 ◽  
Author(s):  
Mayura H Halbe ◽  
David J Fain ◽  
Gregory M Shaver ◽  
Lyle Kocher ◽  
David Koeberlein

Premixed charge compression ignition (PCCI) is a promising combustion strategy for reducing in-cylinder NOx and particulate matter formation in diesel engines without incurring fuel penalty. However, one of the challenges in PCCI implementation is that the process does not allow direct control of the combustion timing. The crank angle of 50% heat release, known as the CA50, is generally a reasonable proxy for the quality of combustion in terms of maximum pressure rise rate, combustion noise, and fuel conversion efficiency. This paper outlines the development, and validation, of a real-time capable estimation strategy for diesel-fueled PCCI CA50 using production-viable measurements that do not include in-cylinder pressure. The CA50 estimation strategy considers both stages of diesel-fueled PCCI combustion—low-temperature heat release and high-temperature heat release, which contributes most to the cumulative heat released during combustion. The strategy is validated using a PCCI CA50 dataset generated with a wide range of positions of a variable geometry turbocharge, exhaust gas recirculation fractions, and intake valve closing timings. The model estimates CA50 within ±2 CAD for 65 out of 80 data points and exhibits an error standard deviation of 2.55 CAD.

Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


Author(s):  
Vassilis Triantopoulos ◽  
Jason B. Martz ◽  
Jeff Sterniak ◽  
George Lavoie ◽  
Dennis N. Assanis ◽  
...  

Abstract Spark-assisted compression ignition (SACI) is a low temperature combustion mode that can offer thermal efficiency improvements and lower nitrogen oxide emissions compared to conventional spark-ignited combustion. However, the SACI operating range is often limited due to excessive pressure rise rates driven by rapid heat release rates. Well-controlled experiments were performed to investigate the SACI operating limits under previously unexplored boosted, stoichiometric, EGR dilute conditions, where low temperature combustion engines promise high thermodynamic efficiencies. At higher intake boost, the SACI high load limit shifted towards lower fuel-to-charge equivalence ratio mixtures, creating a larger gap between the conventional spark-ignition EGR dilution limit and the boosted SACI operating limits. Combustion phasing retard was very effective at reducing maximum pressure rise rate levels until the stability limit, primarily due to slower end-gas burn rates. Gross fuel conversion efficiency improvements up to 10% were observed by using intake boost for either load expansion or dilution extension. Changes in engine speed necessitated changes in unburned gas temperature to match autoignition timing, but were shown to have negligible impact on the heat release profile on a crank angle basis. Lower engine speeds were favorable for load expansion, as time-based peak pressure rise rates scaled with engine speed.


1998 ◽  
Vol 120 (3) ◽  
pp. 664-668 ◽  
Author(s):  
J. Yang ◽  
R. W. Anderson

The effect of engine in-cylinder pressure development on combustion noise is studied based on measured pressure traces and the attenuation-curve theory by Austen and Priede (1958). A new criterion is proposed that correlates better to the noise levels predicted by the attenuation theory than the commonly used maximum pressure rise rate. The effect of engine bore size on combustion noise is studied next with the same engine speed, the same piston mean speed, or the same power output, respectively. For the first two cases, a smaller bore size results in a lower noise level.


2021 ◽  
Author(s):  
Yanuandri Putrasari ◽  
Ocktaeck Lim

A gasoline compression ignition (GCI) engine was proposed to be the next generation internal combustion engine for gasoline. The effect of exhaust gas recirculation (EGR) and intake boosting on combustion and emissions of GCI engine fueled with gasoline-biodiesel blends by partially premixed compression ignition (PPCI) combustions are investigated in this study. Tests were conducted on a single-cylinder direct-injection CI engine, with 5% by volume proportion of biodiesel in gasoline fuel blends. Engine control parameters (EGR rate, intake boosting rate, and various injection strategies) were adjusted to investigate their influences on combustion and emissions of this GCI engine. It is found that changes in EGR rate, intake boosting pressure and injection strategies affect on ignition delay, maximum pressure rise rate and thermal efficiency which is closely tied to HC, CO, NOx and smoke emissions, respectively.


Author(s):  
Yan Chang ◽  
Brandon Mendrea ◽  
Jeff Sterniak ◽  
Stanislav V. Bohac

Spark Assisted Compression Ignition (SACI) offers more practical combustion phasing control and a softer pressure rise rate than Homogeneous Charge Compression Ignition (HCCI) combustion, and improved thermal efficiency and lower NOx emissions than Spark Ignition (SI) combustion. Any practical engine, including one that uses SACI in part of its operating range, must be robust to changes in ambient conditions. This study investigates the effects of ambient temperature and humidity on stoichiometric SACI engine performance, combustion and emissions. It is shown that at the medium speed and load SACI test point selected for this study, increasing ambient air temperature from 20°C to 41°C advances combustion phasing, increases maximum pressure rise rate, causes a larger fraction of the charge to be consumed by auto-ignition (and a smaller fraction by flame propagation), increases NOx, and increases Brake Specific Fuel Consumption (BSFC). Increasing ambient humidity from 32% to 60% retards combustion phasing, reduces maximum pressure rise rate, causes a larger fraction of the charge to be consumed by auto-ignition and a smaller fraction by flame propagation, increases Coefficient of Variation of IMEP (COV) of IMEP, reduces NOx, and increases BSFC. These results show that successful implementation of SACI combustion in real-world driving requires a control strategy that compensates for changes in ambient temperature and humidity.


Author(s):  
Scott J. Curran ◽  
James P. Szybist ◽  
Robert M. Wagner

Advanced combustion techniques have shown promise for achieving high thermal efficiency with simultaneous reductions in oxides of nitrogen (NOx) and particulate matter (PM) emissions. Many advanced combustion studies have used some form of noise-related metric to constrain engine operation, whether it be cylinder pressure rise rate, combustion noise, or ringing intensity. As the development of advanced combustion techniques progresses towards production-viable concepts, combustion noise is anticipated to be of the upmost concern for consumer acceptability. This study compares the noise metrics of cylinder pressure rise rate with combustion noise as measured by an AVL combustion noise meter over a wide range of engine operation conditions with reactivity controlled compression ignition on a light-duty multi-cylinder diesel engine modified to allow for direct injection of diesel fuel and port fuel injection of gasoline. Key parameters affecting noise metrics are engine load, speed, and the amount of boost. The trade-offs between high efficiency, low NOX emissions, and combustion noise were also explored. Additionally, the combustion noise algorithm integrated into the Drivven combustion analysis toolkit is compared to cylinder pressure rise rate and combustion noise as measured with a combustion noise meter. It is shown that the combustion noise of the multi-cylinder reactivity controlled compression ignition map can approach 100 dB while keeping the maximum pressure rise under 100 kPa/CAD.


2021 ◽  
pp. 1-25
Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract This work analyzed measured data from a single-cylinder engine operated under gasoline direction injection homogenous charge compression ignition (GDI-HCCI) mode. The experiments were conducted at a 0.95 equivalence ratio (φ) under 0.5 MPa indicated mean effective pressure and 1500RPM. A side-mounted injector delivered primary reference fuel (octane number 90) into the combustion chamber during negative valve overlap (NVO). Advanced combustion phase CA50 were observed as a function of the start of injection (SOI) timings. Under φ=0.95, peak NVO in-cylinder pressures were lower than motoring for single and split injections, emphasizing that NVO reactions were endothermic. Zero-dimensional kinetics calculations showed classical reformate species (C3H6, C2H4, CH4) from the NVO rich mixture increased almost linearly due to SOI timings, while H2 and CO were typically low. These kinetically reformed species shortened predicted ignition delays. This work also analyzed the effects of intake pressure and single versus double pulses injections on CA50, burn duration, peak cylinder pressure, combustion noise, thermal efficiency, and emissions. Advanced SOI (single-injection) generated excessive combustion noise metrics over constraint limits, but the double-pulse injection could significantly reduce the metrics (Ringing Intensity ≤ 5 MW/m2, Maximum Pressure Rise Rate = 0.6 MPa/CA) and NOx emission. The engine's net indicated thermal efficiency reached 41% under GDI-HCCI mode against 36% under SI mode for the same operating conditions. Under GDI-HCCI mode and without spark-ignition, late fuel injection in the intake stroke could reduce NOx to a single digit.


Author(s):  
Yan Chang ◽  
Brandon Mendrea ◽  
Jeff Sterniak ◽  
Stanislav V. Bohac

Spark-assisted compression ignition (SACI) offers more practical combustion phasing control and a lower pressure rise rate than homogeneous charge compression ignition (HCCI) combustion and improved thermal efficiency and lower NOx emissions than spark ignition (SI) combustion. Any practical passenger car engine, including one that uses SACI in part of its operating range, must be robust to changes in ambient conditions. This study investigates the effects of ambient temperature and humidity on stoichiometric SACI combustion and emissions. It is shown that at the medium speed and load SACI test point selected for this study, increasing ambient air temperature from 20 °C to 41 °C advances combustion phasing, increases maximum pressure rise rate, causes a larger fraction of the charge to be consumed by auto-ignition (and a smaller fraction by flame propagation), and increases NOx. Increasing ambient humidity from 32% to 60% retards combustion phasing, reduces maximum pressure rise rate, increases coefficient of variation (COV) of indicated mean effective pressure (IMEP), reduces NOx, and increases brake-specific fuel consumption (BSFC). These results show that successful implementation of SACI combustion in real-world driving requires a control strategy that compensates for changes in ambient temperature and humidity.


Sign in / Sign up

Export Citation Format

Share Document