Model-based compressor surge avoidance algorithm for internal combustion engines utilizing cylinder deactivation during motoring conditions

2019 ◽  
pp. 146808741988347
Author(s):  
Alexander H Taylor ◽  
Troy E Odstrcil ◽  
Aswin K Ramesh ◽  
Gregory M Shaver ◽  
Edward Koeberlein ◽  
...  

Cylinder deactivation is an efficient strategy for diesel engine exhaust aftertreatment thermal management. Temperatures in excess of 200 °C are necessary for peak NO x conversion efficiency of the aftertreatment system. However, during non-fired engine operation, known as motoring, conventional diesel engines pump low-temperature air through the aftertreatment system. One strategy to mitigate this is to deactivate valve motion during engine motoring. There is a specific condition where care must be taken to avoid compressor surge during the onset of valve deactivated motoring when following high load operation. This study proposes and validates an algorithm which (1) predicts the intake manifold pressure increase instigated while transitioning into cylinder deactivation during motoring, (2) estimates future mass air flow, and (3) avoids compressor surge by implementing staged cylinder deactivation during the onset of engine motoring operation.

Author(s):  
T Wagner ◽  
M L Wyszyński

Aldehydes and ketones in engine exhaust gases are receiving increased attention and are beginning to be subject to special legislation due to their carcinogenic and ozone formation potential. This paper gives an overview of their properties as well as of the basic chemistry and conditions of their formation in internal combustion engines. Extensive research on the effects of engine operation and fuelling parameters is reviewed with specific references to gasoline, diesel, natural gas and methanol fuelled engines. This is accompanied by the review of the studies of the performance of exhaust catalytic converters with respect to aldehydes. Aldehyde detection and measurement methods are summarized and analysed from the point of view of their applicability to exhaust gas analysis.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8166
Author(s):  
Stefan Sterlepper ◽  
Marcus Fischer ◽  
Johannes Claßen ◽  
Verena Huth ◽  
Stefan Pischinger

Hydrogen as carbon-free fuel is a very promising candidate for climate-neutral internal combustion engine operation. In comparison to other renewable fuels, hydrogen does obviously not produce CO2 emissions. In this work, two concepts of hydrogen internal combustion engines (H2-ICEs) are investigated experimentally. One approach is the modification of a state-of-the-art gasoline passenger car engine using hydrogen direct injection. It targets gasoline-like specific power output by mixture enrichment down to stoichiometric operation. Another approach is to use a heavy-duty diesel engine equipped with spark ignition and hydrogen port fuel injection. Here, a diesel-like indicated efficiency is targeted through constant lean-burn operation. The measurement results show that both approaches are applicable. For the gasoline engine-based concept, stoichiometric operation requires a three-way catalyst or a three-way NOX storage catalyst as the primary exhaust gas aftertreatment system. For the diesel engine-based concept, state-of-the-art selective catalytic reduction (SCR) catalysts can be used to reduce the NOx emissions, provided the engine calibration ensures sufficient exhaust gas temperature levels. In conclusion, while H2-ICEs present new challenges for the development of the exhaust gas aftertreatment systems, they are capable to realize zero-impact tailpipe emission operation.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


Author(s):  
G. Papalambrou ◽  
N. P. Kyrtatos

This paper addresses the reduction of smoke emissions and improvement of load acceptance in a turbocharged marine diesel engine, during transient operation involving rapid load increases. Model Predictive Control (MPC) provided the optimal quantity of injected air in the engine while minimizing smoke density (opacity), with constraint not to exceed a limit in intake manifold pressure, in order to avoid surge in the compressor. System identification methods were used to determine control models at various operating points of the engine. Transient response experiments were performed on a full-scale marine diesel test engine on a transient test bed, using real-time MPC configuration. Results comparing the opacity under air injection model predictive control with the standard engine operation without air injection, during the same transient, show reduction in opacity level while avoiding surge.


2020 ◽  
Author(s):  
Mikael Ehn ◽  
Zhandong Wang ◽  
Matti Rissanen ◽  
Olga Garmash ◽  
Lauriane Quéléver ◽  
...  

<p>Autoxidation is a process whereby organic compounds become oxidized by molecular oxygen (O<sub>2</sub>). It is ubiquitous in various reaction systems, contributing to the spoilage of food and wine, ignition in internal combustion engines, and formation of atmospheric secondary organic aerosol (SOA) from volatile emissions. Autoxidation thus greatly influences both engine operation and efficiency, and, via SOA, climate and air quality. Recent progress in atmospheric chemistry has identified double bonds and oxygen-containing moieties as structural facilitators for efficient autoxidation, and subsequent OA formation. Lacking either of these functionalities, alkanes, the primary molecular class in fuels for combustion engines and an important class of urban trace gases, have been expected to have low susceptibility to undergo autoxidation. In this work, we show that alkanes can indeed undergo efficient autoxidation both under combustion-relevant and atmospheric temperatures, consequently producing more highly oxygenated species than previously expected. By bridging methodologies and knowledge from both combustion and atmospheric chemistry, we mapped the autoxidation potential of a range of alkane structures under various conditions, from the combustion domain to the atmospheric domain. We identified the importance of isomerization steps driven by both peroxy and alkoxy radicals, and show that isomerization and production of low-volatile condensable vapors is efficient even under highly polluted ([NO]>10ppb) conditions. Our findings, currently under review, provide insights into the underlying chemical mechanisms causing highly variable SOA yields from alkanes, which were observed in previous atmospheric studies. The results of this inter-disciplinary effort provide crucial new information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.</p>


Author(s):  
S. Ahmad Ghazi Mir Saied ◽  
S. Ali Jazayeri ◽  
Amir H. Shamekhi

In internal combustion engines valve events and timings are among the most important parameters which have a major influence on the engine’s operation and volumetric efficiency. By using camless valvetrain strategy, improvement in fuel economy as well as an increase in entering air charge is found throughout the engine map with the largest benefits arising from low speed operating conditions. The system offers a continuously variable and independent control of virtually all parameters of valve motion. This permits optimization of valve events for each operating condition without any compromise. In this paper we describe a phenomenological model for an unthrottled operation of a camless intake process of spark-ignited (SI) engine. Initially the cylinder breathing dynamics is modeled and results are validated with experimental data of a conventional engine with cam-driven valve profile during unthrottled operation. Then we determine the most optimized intake valve profile in order to have the most volumetric efficiency and proper operation for each operating condition based on the existing model and using numerical techniques.


2006 ◽  
Vol 129 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Matthew A. Franchek ◽  
Patrick J. Buehler ◽  
Imad Makki

Presented is the detection, isolation, and estimation of faults that occur in the intake air path of internal combustion engines during steady state operation. The proposed diagnostic approach is based on a static air path model, which is adapted online such that the model output matches the measured output during steady state conditions. The resulting changes in the model coefficients create a vector whose magnitude and direction are used for fault detection and isolation. Fault estimation is realized by analyzing the residual between the actual sensor measurement and the output of the original (i.e., healthy) model. To identify the structure of the steady state air path model a process called system probing is developed. The proposed diagnostics algorithm is experimentally validated on the intake air path of a Ford 4.6L V-8 engine. The specific faults to be identified include two of the most problematic faults that degrade the performance of transient fueling controllers: bias in the mass air flow sensor and a leak in the intake manifold. The selected model inputs include throttle position and engine speed, and the output is the mass air flow sensor measurement.


1969 ◽  
Vol 184 (1) ◽  
pp. 507-542 ◽  
Author(s):  
C. C. J. French

The local heat flows through the walls of components which form the boundary of the combustion chamber of internal combustion engines operating at high engine ratings exceed those found in most engineering equipment. Despite this the coolant-side face is normally in the ‘as cast’ condition, sometimes with core sand adhering to or embedded in the surface and a rust film, which is almost always present in the case of ferrous components. It is also common for additives such as glycol, soluble oils and/or corrosion inhibitors to be added to the coolant. This paper describes the techniques employed in, and gives the results of, an extensive series of tests into the effect of such surfaces and additives on heat transfer and then goes on to describe the use of the resulting data to predict the operating temperatures of diesel engine components in service. The paper also describes the design techniques that have been evolved to permit satisfactory engine operation under highly rated conditions.


Sign in / Sign up

Export Citation Format

Share Document