Mapping the combustion modes of a dual-fuel compression ignition engine

2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.

Fuel ◽  
2017 ◽  
Vol 209 ◽  
pp. 587-597 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Kyoungdoug Min ◽  
Minjae Kim ◽  
Hyunsung Jung ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Jaegu Kang ◽  
Kyoungdoug Min ◽  
Hyunsung Jung ◽  
...  

In this research, there are two major sections for analysis: the characteristics of gasoline and diesel dual-fuel combustion and their application to operating load extension with high thermal efficiency and low emissions. All the experiments were completed using a single-cylinder compression ignition engine with 395 cc displacement. In the first section, the dual-fuel combustion modes were classified into three cases by their heat release rate shapes. Staying at 1500 r/min with a total value of 580 J of low heat for each cycle condition, the diesel injection timing was varied from before top dead center with a 6–46 °crank angle with 70% of gasoline fraction based on the low heating value. Among the modes were two suitable dual-fuel combustion modes for a premixed compression ignition. The first suitable mode shows multiple peaks in the heat release rate (mode 2) and the second suitable mode shows a single peak with a “bell-shaped” heat release rate (mode 3). These two dual-fuel combustion types showed a high gross indicated thermal efficiency of up to 46%. Based on the results in the first section, the practical application of dual-fuel premixed compression ignition combustion was investigated considering a high thermal efficiency and a high-load condition. At a 1500 r/min/gross indicated mean effective pressure of 6.5 bar, 48% of the gross indicated thermal efficiency was obtained by using dual-fuel premixed compression ignition combustion mode 3. This mode was typical of a “reactivity controlled compression ignition,” while the nitrogen oxides and the particulate matter emissions satisfied the EURO-6 regulation (0.21 g/kW h and 2.8 mg/m3, respectively). In addition, a high thermal efficiency (45%) with low maximum pressure rise rate, NOx (nitrogen oxides), and particulate matter emissions was obtained at 2000 r/min/gross indicated mean effective pressure 14 bar condition by the adjustment of dual-fuel premixed compression ignition combustion mode 2. As a result, this research contributes to the understanding and practical application of dual-fuel combustion for a light-duty compression ignition engine.


Author(s):  
Mahdiar Khosravi ◽  
Jeremy Rochussen ◽  
Jeff Yeo ◽  
Patrick Kirchen ◽  
Gordon McTaggart-Cowan ◽  
...  

Its inherent economic and environmental advantages as an internal combustion engine fuel make natural gas (NG) an attractive alternative to diesel fuel as the primary energy source for some compression ignition (CI) engine applications. Diesel pilot-ignition of NG is an attractive fueling strategy as it typically requires minimal modification of existing CI engines. Furthermore, this strategy makes use of the highly developed direct injection (DI) diesel fuel systems already employed on modern CI engines for to control dual-fuel (DF) combustion. Despite the increasing popularity of the dual-fuel NG engine concept, the fundamental understanding of the fuel conversion mechanisms and the impact of the fueling parameters is still incomplete. A conceptual understanding of the relevant physics is necessary for further development of fueling and pilot-ignition strategies to address the shortcomings of dual-fuel combustion, such as low-load emissions and combustion stability. An experimental facility supporting optical diagnostics via a Bowditch piston arrangement in a 2-litre, single-cylinder research engine (Ricardo Proteus) was used in this study to consider the effect of fueling parameters on the fuel conversion process in a dual fuel engine. Fueling was achieved with port injected CH4 and diesel direct injection using a common rail system. Simultaneous, high-speed natural luminosity (NL) and OH* chemiluminescence imaging was used to characterize dual-fuel combustion and the influence of pilot injection pressure (300 bar vs. 1300 bar) and relative diesel-CH4 ratios (pilot ratio, PR), as these have been noted as key operating dual-fuel control metrics. The pilot injection pressure was observed to have a significant impact on the fuel conversion process. At higher pilot injection pressures, the auto-ignition sites were concentrated around the piston bowl periphery and the reaction zone propagated towards the center of the bowl. At lower pilot injection pressures, ignition initiated in the vicinity of the pilot fuel jet structures and resulted in a more heterogeneous fuel conversion process with regions of intense natural luminosity, attributed to particulate matter. An increase in the pilot ratio (i.e., increased diesel fraction) resulted in a more aggressive combustion event, due to a larger fraction of energy released in a premixed auto-ignition event. This was coupled with a decrease in the fraction of the combustion chamber with significant OH* or NL light emission, indicating incomplete fuel conversion in these regions. The insight to the dual-fuel conversion processes presented in this work will be ultimately used to develop dual-fuel injection strategies, as well as provide much needed validation data for modeling efforts.


2013 ◽  
Author(s):  
Jeongwoo Lee ◽  
Seungmok Choi ◽  
Gyujin Kim ◽  
Dongsu Kim ◽  
Seunghyun Lee ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2936 ◽  
Author(s):  
Hua Tian ◽  
Jingchen Cui ◽  
Tianhao Yang ◽  
Yao Fu ◽  
Jiangping Tian ◽  
...  

Low-temperature combustions (LTCs), such as homogeneous charge compression ignition (HCCI), could achieve high thermal efficiency and low engine emissions by combining the advantages of spark-ignited (SI) engines and compression-ignited (CI) engines. Robust control of the ignition timing, however, still remains a hurdle to practical use. A novel technology of jet-controlled compression ignition (JCCI) was proposed to solve the issue. JCCI combustion phasing was controlled by hot jet formed from pre-chamber spark-ignited combustion. Experiments were done on a modified high-speed marine engine for JCCI characteristics research. The JCCI principle was verified by operating the engine individually in the mode of JCCI and in the mode of no pre-chamber jet under low- and medium-load working conditions. Effects of pre-chamber spark timing and intake charge temperature on JCCI process were tested. It was proven that the combustion phasing of the JCCI engine was closely related to the pre-chamber spark timing. A 20 °C temperature change of intake charge only caused a 2° crank angle change of the start of combustion. Extremely low nitrogen oxides (NOx) emission was achieved by JCCI combustion while keeping high thermal efficiency. The JCCI could be a promising technology for dual-fuel marine engines.


2019 ◽  
Vol 21 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


2014 ◽  
Vol 113 ◽  
pp. 722-733 ◽  
Author(s):  
Binbin Yang ◽  
Mingfa Yao ◽  
Wai K. Cheng ◽  
Yu Li ◽  
Zunqing Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document