A Study of Emissions Reduction through Dual-Fuel Combustion with Propane in a Compression Ignition Engine

Author(s):  
Jeongwoo Lee ◽  
Seungmok Choi ◽  
Gyujin Kim ◽  
Dongsu Kim ◽  
Seunghyun Lee ◽  
...  
2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


2018 ◽  
Vol 20 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Jaegu Kang ◽  
Kyoungdoug Min ◽  
Hyunsung Jung ◽  
...  

In this research, there are two major sections for analysis: the characteristics of gasoline and diesel dual-fuel combustion and their application to operating load extension with high thermal efficiency and low emissions. All the experiments were completed using a single-cylinder compression ignition engine with 395 cc displacement. In the first section, the dual-fuel combustion modes were classified into three cases by their heat release rate shapes. Staying at 1500 r/min with a total value of 580 J of low heat for each cycle condition, the diesel injection timing was varied from before top dead center with a 6–46 °crank angle with 70% of gasoline fraction based on the low heating value. Among the modes were two suitable dual-fuel combustion modes for a premixed compression ignition. The first suitable mode shows multiple peaks in the heat release rate (mode 2) and the second suitable mode shows a single peak with a “bell-shaped” heat release rate (mode 3). These two dual-fuel combustion types showed a high gross indicated thermal efficiency of up to 46%. Based on the results in the first section, the practical application of dual-fuel premixed compression ignition combustion was investigated considering a high thermal efficiency and a high-load condition. At a 1500 r/min/gross indicated mean effective pressure of 6.5 bar, 48% of the gross indicated thermal efficiency was obtained by using dual-fuel premixed compression ignition combustion mode 3. This mode was typical of a “reactivity controlled compression ignition,” while the nitrogen oxides and the particulate matter emissions satisfied the EURO-6 regulation (0.21 g/kW h and 2.8 mg/m3, respectively). In addition, a high thermal efficiency (45%) with low maximum pressure rise rate, NOx (nitrogen oxides), and particulate matter emissions was obtained at 2000 r/min/gross indicated mean effective pressure 14 bar condition by the adjustment of dual-fuel premixed compression ignition combustion mode 2. As a result, this research contributes to the understanding and practical application of dual-fuel combustion for a light-duty compression ignition engine.


Fuel ◽  
2017 ◽  
Vol 197 ◽  
pp. 583-595 ◽  
Author(s):  
Shui Yu ◽  
Tongyang Gao ◽  
Meiping Wang ◽  
Liguang Li ◽  
Ming Zheng

2021 ◽  
Vol 299 ◽  
pp. 117305
Author(s):  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
Santiago Martinez-Boggio ◽  
Patrick Gaillard

Sign in / Sign up

Export Citation Format

Share Document