scholarly journals Physical Activity Measured Using Global Positioning System Tracking in Non–Small Cell Lung Cancer

2014 ◽  
Vol 13 (6) ◽  
pp. 482-492 ◽  
Author(s):  
Catherine L. Granger ◽  
Linda Denehy ◽  
Christine F. McDonald ◽  
Louis Irving ◽  
Ross A. Clark

Introduction. Increasingly physical activity (PA) is being recognized as an important outcome in non–small cell lung cancer (NSCLC). We investigated PA using novel global positioning system (GPS) tracking individuals with NSCLC and a group of similar-aged healthy individuals. Methods. A prospective cross-sectional multicenter study. Fifty individuals with NSCLC from 3 Australian tertiary hospitals and 35 similar-aged healthy individuals without cancer were included. Individuals with NSCLC were assessed pretreatment. Primary measures were triaxial accelerometery (steps/day) and GPS tracking (outdoor PA behavior). Secondary measures were questionnaires assessing depression, motivation to exercise, and environmental barriers to PA. Between-group comparisons were analyzed using analysis of covariance. Results. Individuals with NSCLC engaged in significantly less PA than similar-aged healthy individuals (mean difference 2363 steps/day, P = .007) and had higher levels of depression ( P = .027) and lower motivation to exercise ( P = .001). Daily outdoor walking time ( P = .874) and distance travelled away from home ( P = .883) were not different between groups. Individuals with NSCLC spent less time outdoors in their local neighborhood area ( P < .001). A greater number of steps per day was seen in patients who were less depressed ( r = .39) or had better access to nonresidential destinations such as shopping centers ( r = .25). Conclusion. Global positioning system tracking appears to be a feasible methodology for adult cancer patients and holds promise for use in future studies investigating PA and or lifestyle behaviors.

2016 ◽  
Vol 11 (8) ◽  
pp. 1067-1073 ◽  
Author(s):  
Darcy M. Brown ◽  
Dan B. Dwyer ◽  
Samuel J. Robertson ◽  
Paul B. Gastin

The purpose of this study was to assess the validity of a global positioning system (GPS) tracking system to estimate energy expenditure (EE) during exercise and field-sport locomotor movements. Twenty-seven participants each completed a 90-min exercise session on an outdoor synthetic futsal pitch. During the exercise session, they wore a 5-Hz GPS unit interpolated to 15 Hz and a portable gas analyzer that acted as the criterion measure of EE. The exercise session was composed of alternating 5-minute exercise bouts of randomized walking, jogging, running, or a field-sport circuit (×3) followed by 10 min of recovery. One-way analysis of variance showed significant (P < .01) and very large underestimations between GPS metabolic power– derived EE and oxygen-consumption (VO2) -derived EE for all field-sport circuits (% difference ≈ –44%). No differences in EE were observed for the jog (7.8%) and run (4.8%), whereas very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90-min session was significantly lower (P < .01) than the VO2 EE, resulting in a moderate underestimation overall (–19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field-sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however, is it able to provide a reasonably accurate estimation of EE during continuous jogging and running.


2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Bart Dewulf ◽  
Tijs Neutens ◽  
Delfien Van Dyck ◽  
Ilse De Bourdeaudhuij ◽  
Steven Broekx ◽  
...  

Physical activity is an important facilitator for health and wellbeing, especially for late middle-aged adults, who are more susceptible to cardiovascular diseases. Physical activity performed in green areas is supposed to be particularly beneficial, so we studied whether late middle- aged adults are more active in green areas than in non-green areas and how this is influenced by individual characteristics and the level of neighbourhood greenness. We tracked 180 late middle-aged (58 to 65 years) adults using global positioning system and accelerometer data to know whether and where they were sedentary or active. These data were combined with information on land use to obtain information on the greenness of sedentary and active hotspots. We found that late middle-aged adults are more physically active when spending more time in green areas than in non-green areas. Spending more time at home and in non-green areas was found to be associated with more sedentary behaviour. Time spent in non-green areas was found to be related to more moderate-to-vigorous physical activity (MVPA) for males and to less MVPA for females. The positive association between time spent in green areas and MVPA was the strongest for highly educated people and for those living in a green neighbourhood. This study shows that the combined use of global positioning system and accelerometer data facilitates understanding of where people are sedentary or physically active, which can help policy makers encourage activity in this age cohort.


Author(s):  
Anna M.J. Iveson ◽  
Malcolm H. Granat ◽  
Brian M. Ellis ◽  
Philippa M. Dall

Objective: Global positioning system (GPS) data can add context to physical activity data and have previously been integrated with epoch-based physical activity data. The current study aimed to develop a framework for integrating GPS data and event-based physical activity data (suitable for assessing patterns of behavior). Methods: A convenience data set of concurrent GPS (AMOD) and physical activity (activPAL) data were collected from 69 adults. The GPS data were (semi)regularly sampled every 5 s. The physical activity data output was presented as walking events, which are continuous periods of walking with a time-stamped start time and duration (to nearest 0.1 s). The GPS outcome measures and the potential correspondence of their timing with walking events were identified and a framework was developed describing data integration for each combination of GPS outcome and walking event correspondence. Results: The GPS outcome measures were categorized as those deriving from a single GPS point (e.g., location) or from the difference between successive GPS points (e.g., distance), and could be categorical, scale, or rate outcomes. Walking events were categorized as having zero (13% of walking events, 3% of walking duration), or one or more (52% of walking events, 75% of walking duration) GPS points occurring during the event. Additionally, some walking events did not have GPS points suitably close to allow calculation of outcome measures (31% of walking events, 22% of walking duration). The framework required different integration approaches for each GPS outcome type, and walking events containing zero or more than one GPS points.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117094 ◽  
Author(s):  
Elizabeth A. Bruno ◽  
James W. Guthrie ◽  
Stephen A. Ellwood ◽  
Richard J. Mellanby ◽  
Dylan N. Clements

2020 ◽  
Vol 66 (5) ◽  
pp. 553-555
Author(s):  
Dahabo Adi Galgallo ◽  
Ibrahim Lio ◽  
Adano Kochi ◽  
Dennis Kalikidane Mutiga CCE ◽  
James Ransom

Abstract We report the case of a 9-month-old male infant diagnosed in the field with extra-pulmonary tuberculosis (TB). Use of innovative global positioning system tracking of pregnant pastoralist women allowed staff to find the mother, locate the infant and enroll the infant in care and treatment. Due to this innovative intervention of case finding and tracking, the infant was prevented from defaulting and completed his anti-TB regimen.


Author(s):  
Yorihide Yanagita ◽  
Masaki Oomagari ◽  
Hikaru Machiguchi ◽  
Takaya Ogawa ◽  
Shinichi Arizono ◽  
...  

2007 ◽  
Vol 104 (18) ◽  
pp. 7471-7476 ◽  
Author(s):  
Dora Biro ◽  
Robin Freeman ◽  
Jessica Meade ◽  
Stephen Roberts ◽  
Tim Guilford

How do birds orient over familiar terrain? In the best studied avian species, the homing pigeon (Columba livia), two apparently independent primary mechanisms are currently debated: either memorized visual landmarks provide homeward guidance directly, or birds rely on a compass to home from familiar locations. Using miniature Global Positioning System tracking technology and clock-shift procedures, we set sun-compass and landmark information in conflict, showing that experienced birds can accurately complete their memorized routes by using landmarks alone. Nevertheless, we also find that route following is often consistently offset in the expected compass direction, faithfully reproducing the shape of the track, but in parallel. Thus, we demonstrate conditions under which compass orientation and landmark guidance must be combined into a system of simultaneous or oscillating dual control.


Sign in / Sign up

Export Citation Format

Share Document