Organization and Management of Human Factors in High Technology Organizations

1983 ◽  
Vol 27 (1) ◽  
pp. 69-69
Author(s):  
Ogden Brown

The Technical Group on Organizational Design and Management is interested in determining organizational characteristics of successful firms which have Human Factors Groups or Departments within their structure. Of particular interest is the organizational design employed by these companies and how the human factors function is incorporated into this framework. Also of interest is the degree of differentiation and the extent to which integrating functions have been or are now present in the organization. One way to learn about these considerations is to examine organizational programs, noting initial design, subsequent changes, management practices, and problems encountered in initiating human factors efforts. Another method by which we might learn about alternative management systems, organizational design, and problems encountered is to consult those who have the responsibility for managing human factors programs in large, high technology organizations which have incorporated the human factors function into their design.

Author(s):  
Philip Grossweiler ◽  
David Costello ◽  
Kevin Graham

Regulations governing the safety of drilling and offshore production operations have changed since the Macondo spill. This paper suggests management level perspectives on the nexus of human factors and safety management systems including an overview of ideas from: Congressional Testimony; the Bipartisan Policy Center inputs to the Presidents Commission on the Spill; the National Academy of Engineering and National Research Council Deepwater Horizon Report, and workshops and initiatives by RPSEA (Research Partnership to Secure Energy for America), SPE, and ASME. The value of benchmarks from risk management practices from the aviation, nuclear power, and financial community are also discussed. The paper will also consider questions as to what management might consider reducing risk and treating risk management as not just a cost center, but as a way to integrate safety management systems into improving corporate performance for all stakeholders. Paper published with permission.


1987 ◽  
Vol 2 (3) ◽  
pp. 99-106 ◽  
Author(s):  
John W. Doran ◽  
Daniel G. Fraser ◽  
Martin N. Culik ◽  
William C. Liebhardt

AbstractMicrobial activities important to effects on crop productivity and nutrient cycling can be altered by agricultural management practices. This study was conducted to determine whether soil microbial populations and their N cycling activities differ between conventional and alternative management practices. Physical, chemical, and microbial soil properties were measured at soil depth intervals of 0 to 7.5, 7.5 to 15, and 15 to 30 cm at a site in southeastern Pennsylvania during the second and fifth years after conversion from a conventional, chemically intensive system to alternative systems utilizing legumes and animal manure as N sources. In the second year after conversion, populations of fungi and bacteria, dehydrogenase activity, and soil respiration in the surface soil layer were greatest with alternative systems planted to red clover (Trifolium pratense L.). Differences in soil biological factors between management systems were related primarily to crop characteristics and, to a lesser extent, to soil physical properties. Levels of microbial populations and activities with conventional management were the same as with alternative management systems when similar crops such as corn (Zea mays L.) or soybean [Glycine max (L.) Merrill] were grown. Soil NO3-N contents, at most sampling depths, were markedly increased by application of fertilizer N or recent plow-down of red clover or hairy vetch (Vicia villosa Roth). The growth of red clover in the second year or hairy vetch in the fifth year was accompanied by significantly increased microbial biomass and potentially mineralizable N (PMN) reserves in the top 30-cm soil layer-these changes being most pronounced in the surface 0- to 7.5-cm layer. Nitrogen deficiency symptoms and lower corn grain yields in a legume/cash grain rotation as compared with conventional management in the second year were associated with lower soil NO3, levels and a greater proportion of N present as weed biomass and belowground microbial biomass. In 1985, management systems comparisons were limited to corn as the main crop; soil NO3 levels during the growing season were inversely related to soil microbial biomass and PMN levels where hairy vetch was overseeded and incorporated as green manure by plowing before corn planting. Under the conditions of this study, the use of chemicals had little effect on microbial populations, their activity, or the cycling of nitrogen. Cropping systems-in particular, the growth of red clover or hairy vetch—profoundly influenced soil microbial biomass levels and soil pools of organic and available NO3-N during the growing season. Competitiveness of alternative management systems employing legumes as? sources for grain crops may depend largely on the grower's ability to synchronize supplies of available soil N with periods of maximum uptake by grain crops.


1987 ◽  
Vol 31 (2) ◽  
pp. 166-167 ◽  
Author(s):  
Andrew S. Imada

This symposium proposes macroergonomics as a vehicle for integrating human and organizational needs. The concept is defined and differentiated from more traditional studies in organizational behavior and human factors. Specific areas of focus include: conceptuation and differentiation of the unique contributions of macroergonomics; current practices and directions; integration of human and organizational data; and contemporary issues and concerns facing researchers and writers in the field.


2021 ◽  
Vol 146 ◽  
pp. 105975
Author(s):  
Andrea Parenti ◽  
Giovanni Cappelli ◽  
Walter Zegada-Lizarazu ◽  
Carlos Martín Sastre ◽  
Myrsini Christou ◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Alireza Sassani ◽  
Omar Smadi ◽  
Neal Hawkins

Pavement markings are essential elements of transportation infrastructure with critical impacts on safety and mobility. They provide road users with the necessary information to adjust driving behavior or make calculated decisions about commuting. The visibility of pavement markings for drivers can be the boundary between a safe trip and a disastrous accident. Consequently, transportation agencies at the local or national levels allocate sizeable budgets to upkeep the pavement markings under their jurisdiction. Infrastructure asset management systems (IAMS) are often biased toward high-capital-cost assets such as pavements and bridges, not providing structured asset management (AM) plans for low-cost assets such as pavement markings. However, recent advances in transportation asset management (TAM) have promoted an integrated approach involving the pavement marking management system (PMMS). A PMMS brings all data items and processes under a comprehensive AM plan and enables managing pavement markings more efficiently. Pavement marking operations depend on location, conditions, and AM policies, highly diversifying the pavement marking management practices among agencies and making it difficult to create a holistic image of the system. Most of the available resources for pavement marking management focus on practices instead of strategies. Therefore, there is a lack of comprehensive guidelines and model frameworks for developing PMMS. This study utilizes the existing body of knowledge to build a guideline for developing and implementing PMMS. First, by adapting the core AM concepts to pavement marking management, a model framework for PMMS is created, and the building blocks and elements of the framework are introduced. Then, the caveats and practical points in PMMS implementation are discussed based on the US transportation agencies’ experiences and the relevant literature. This guideline is aspired to facilitate PMMS development for the agencies and pave the way for future pavement marking management tools and databases.


1984 ◽  
Vol 28 (4) ◽  
pp. 341-343
Author(s):  
Philip E. Knobel ◽  
Michael E. Wiklund

Engineer/constructor firms responsible for large process plant engineering, including the human-plant interface, have an emerging need for in-house human factors engineering (HFE) expertise. Stone & Webster Engineering Corporation has met his need through the creation of an HFE group. The group was founded as a small, informal, multidisciplinary organization. In an experimental manner, the group was provided the freedom to define its HFE markets within the firm and the process and power industry. Organizational design and management factors related to the functions and effectiveness of the group are discussed.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


Sign in / Sign up

Export Citation Format

Share Document