scholarly journals Parallel genetic algorithms on the graphics processing units using island model and simulated annealing

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770741 ◽  
Author(s):  
Cheng-Chieh Li ◽  
Chu-Hsing Lin ◽  
Jung-Chun Liu

To solve a non-deterministic polynomial-hard problem, we can adopt an approximate algorithm for finding the near-optimal solution to reduce the execution time. Although this approach can come up with solutions much faster than brute-force methods, the downside of it is that only approximate solutions are found in most situations. The genetic algorithm is a global search heuristic and optimization method. Initially, genetic algorithms have many shortcomings, such as premature convergence and the tendency to converge toward local optimal solutions; hence, many parallel genetic algorithms are proposed to solve these problems. Currently, there exist many literatures on parallel genetic algorithms. Also, a variety of parallel genetic algorithms have been derived. This study mainly uses the advantages of graphics processing units, which has a large number of cores, and identifies optimized algorithms suitable for computation in single instruction, multiple data architecture of graphics processing units. Furthermore, the parallel simulated annealing method and spheroidizing annealing are also used to enhance performance of the parallel genetic algorithm.

2010 ◽  
Vol 143-144 ◽  
pp. 1370-1374
Author(s):  
Jin Hong Ma ◽  
Wen Zhi Zhang ◽  
Wei Chen ◽  
Shi Ping Chao

In this paper, the standard genetic algorithm is modified based on the deduction of Rolle theory. A kind of genetic algorithms is set up. Combined the modified genetic algorithms with finite element method, a new kind engineering optimization method is established. This optimal method takes fully advantage of the unique feature of genetic algorithms that the optimal solution is achieved by a rapid global search and takes advantage of the unique features of FEM that the computation is accuracy. This method can solve multi-objective problems with more complex constraints in the engineering. The procedure is developed by VC++. Housing’s fillet angle of the universal rolling mills is optimized using this method. Compared with the zero order method and first order method companied with ANSYS, the result of this optimizing method is better.


2012 ◽  
Vol 490-495 ◽  
pp. 267-271 ◽  
Author(s):  
Shu Fei Li

An effective hybrid Simulated Annealing Algorithm based on Genetic Algorithm is proposed to apply to reservoir operation. Compared with other optimal methods, it is proved that SA-GA algorithm is a quite effective optimization method to solve reservoir operation problem. The simulated annealing algorithm is introduced to Genetic Algorithm, which is feasibility and validity. As a result of stronger ability of global search and better convergence property of SA-GA, and compared with other algorithms, the approximate global optimal solution would be obtained in little time. The operation speed is more quickness and the results are more stabilization by SA-GA, than Genetic Algorithm and the traditional Dynamic Programming and POA.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


2015 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
G. V. Gonzales ◽  
E. D. Dos Santos ◽  
L. R. Emmendorfer ◽  
L. A. Isoldi ◽  
E. S. D. Estrada ◽  
...  

he problem study here is concerned with the geometrical evaluation of an isothermal Y-shaped cavity intruded into conducting solid wall with internal heat generation. The cavity acts as a sink of the heat generated into the solid. The main purpose here is to minimize the maximal excess of temperature (θmax) in the solid. Constructal Design, which is based on the objective and constraints principle, is employed to evaluate the geometries of Y-shaped cavity. Meanwhile, Simulated Annealing (SA) algorithm is employed as optimization method to seek for the best shapes. To validate the SA methodology, the results obtained with SA are compared with those achieved with Genetic Algorithm (GA) and Exaustive Search (ES) in recent studies of literature. The comparison between the optimization methods (SA, GA and ES) showed that Simulated Annealing is highly effective in the search for the optimal shapes of the studied case.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2083 ◽  
Author(s):  
Wangqi Xiong ◽  
Jiandong Wang

This paper proposes a parallel grid search algorithm to find an optimal operating point for minimizing the power consumption of an experimental heating, ventilating and air conditioning (HVAC) system. First, a multidimensional, nonlinear and non-convex optimization problem subject to constraints is formulated based on a semi-physical model of the experimental HVAC system. Second, the optimization problem is parallelized based on Graphics Processing Units to simultaneously compute optimization loss functions for different solutions in a searching grid, and to find the optimal solution as the one having the minimum loss function. The proposed algorithm has an advantage that the optimal solution is known with evidence as to the best one subject to current resolutions of the searching grid. Experimental studies are provided to support the proposed algorithm.


2015 ◽  
Vol 783 ◽  
pp. 83-94
Author(s):  
Alberto Borboni

In this work, the optimization problem is studied for a planar cam which rotates around its axis and moves a centered translating roller follower. The proposed optimization method is a genetic algorithm. The paper deals with different design problems: the minimization of the pressure angle, the maximization of the radius of curvature and the minimization of the contact pressure. Different types of motion laws are tested to found the most suitable for the computational optimization process.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 139
Author(s):  
Maxinder S Kanwal ◽  
Avinash S Ramesh ◽  
Lauren A Huang

Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.


Author(s):  
D T Pham ◽  
Y Yang

Four techniques are described which can help a genetic algorithm to locate multiple approximate solutions to a multi-modal optimization problem. These techniques are: fitness sharing, ‘eliminating’ identical solutions, ‘removing’ acceptable solutions from the reproduction cycle and applying heuristics to improve sub-standard solutions. Essentially, all of these techniques operate by encouraging genetic variety in the potential solution set. The preliminary design of a gearbox is presented as an example to illustrate the effectiveness of the proposed techniques.


2014 ◽  
Vol 889-890 ◽  
pp. 107-112
Author(s):  
Ji Ming Tian ◽  
Xin Tan

The design of the gearbox must ensure the simplest structure and the lightest weight under the premise of meeting the reliability and life expectancy. According to the requirement of wind turbine, an improved method combined dynamic penalty function with pseudo-parallel genetic algorithm is used to optimize gearbox. It takes the minimum volumes as object functions. It is showed that the ability to search the global optimal solution of improved genetic algorithm and less number of iterations. The global optimal solution is worked out quickly. The size parameters are optimized, as much as the driving stability and efficiency. To verify the feasibility of improved genetic algorithm, ring gear of the gearbox is analyzed. Static strength analysis shows that the optimization method is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document