scholarly journals A three-dimensional point cloud registration based on entropy and particle swarm optimization

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881433 ◽  
Author(s):  
Xu Zhan ◽  
Yong Cai ◽  
Ping He

A three-dimensional (3D) point cloud registration based on entropy and particle swarm algorithm (EPSA) is proposed in the paper. The algorithm can effectively suppress noise and improve registration accuracy. Firstly, in order to find the k-nearest neighbor of point, the relationship of points is established by k-d tree. The noise is suppressed by the mean of neighbor points. Secondly, the gravity center of two point clouds is calculated to find the translation matrix T. Thirdly, the rotation matrix R is gotten through particle swarm optimization (PSO). While performing the PSO, the entropy information is selected as the fitness function. Lastly, the experiment results are presented. They demonstrate that the algorithm is valuable and robust. It can effectively improve the accuracy of rigid registration.

2019 ◽  
Vol 53 (3-4) ◽  
pp. 265-275 ◽  
Author(s):  
Xu Zhan ◽  
Yong Cai ◽  
Heng Li ◽  
Yangmin Li ◽  
Ping He

Based on normal vector and particle swarm optimization (NVP), a point cloud registration algorithm is proposed by searching the corresponding points. It provides a new method for point cloud registration using feature point registration. First, in order to find the nearest eight neighbor nodes, the k-d tree is employed to build the relationship between points. Then, the normal vector and the distance between the point and the center gravity of eight neighbor points can be calculated. Second, the particle swarm optimization is used to search the corresponding points. There are two conditions to terminate the search in particle swarm optimization: one is that the normal vector of node in the original point cloud is the most similar to that in the target point cloud, and the other is that the distance between the point and the center gravity of eight neighbor points of node is the most similar to that in the target point cloud. Third, after obtaining the corresponding points, they are tested by random sample consensus in order to obtain the right corresponding points. Fourth, the right corresponding points are registered by the quaternion method. The experiments demonstrate that this algorithm is effective. Even in the case of point cloud data lost, it also has high registration accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wenbo Zhu ◽  
Hao Ma ◽  
Gaoyan Cai ◽  
Jianwen Chen ◽  
Xiucai Wang ◽  
...  

Aimed at the problem of order determination of short-term power consumption in a time series model, a new method was proposed to determine the order p and the moving average q of the ARMA model by particle swarm optimization (PSO).According to the difference between the predicted value and the real value of the ARMA model, the fitness function of the particle swarm optimization algorithm is constructed, while the optimal solution which satisfies the ARMA model is confirmed by adjusting the inertia weight, population size, particle velocity, and iteration number. Finally, SVR regression is performed by using a support vector machine to correct the residual sequence obtained after the prediction of ARMA. The final prediction result is obtained by adding the predicted values and corrected residual. Based on the data of historical electricity load of a residential district in 2016~2017, the proposed method is compared with the traditional models. The result of the use of MATLAB simulation shows that the method is simple and feasible, greatly improves the model prediction accuracy, and implements the new method for short-term load forecasting of a small sample.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


2021 ◽  
pp. 15-27
Author(s):  
Mamdouh Kamaleldin AHMED ◽  
◽  
Mohamed Hassan OSMAN ◽  
Nikolay V. KOROVKIN ◽  
◽  
...  

The penetration of renewable distributed generations (RDGs) such as wind and solar energy into conventional power systems provides many technical and environmental benefits. These benefits include enhancing power system reliability, providing a clean solution to rapidly increasing load demands, reducing power losses, and improving the voltage profile. However, installing these distributed generation (DG) units can cause negative effects if their size and location are not properly determined. Therefore, the optimal location and size of these distributed generations may be obtained to avoid these negative effects. Several conventional and artificial algorithms have been used to find the location and size of RDGs in power systems. Particle swarm optimization (PSO) is one of the most important and widely used techniques. In this paper, a new variant of particle swarm algorithm with nonlinear time varying acceleration coefficients (PSO-NTVAC) is proposed to determine the optimal location and size of multiple DG units for meshed and radial networks. The main objective is to minimize the total active power losses of the system, while satisfying several operating constraints. The proposed methodology was tested using IEEE 14-bus, 30-bus, 57-bus, 33-bus, and 69- bus systems with the change in the number of DG units from 1 to 4 DG units. The result proves that the proposed PSO-NTVAC is more efficient to solve the optimal multiple DGs allocation with minimum power loss and a high convergence rate.


2020 ◽  
pp. 47-56
Author(s):  
M. Ilayaraja ◽  

Mobile adhoc network (MANET) comprises a network of mobile nodes, which communicates with one another through wireless connections. Reliability, energy efficiency, congestion control and interferences are the problems faced with the traditional routing protocols in MANET. Routing defines the process of identifying the optimal paths between two nodes in the network. For resolving these issues, several multipath routing techniques have been presented. This paper assesses the performance of the two bio-inspired multipath routing techniques namely Energy-Aware Multipath Routing Scheme based on particle swarm optimization (EMPSO) and PSO with fitness function (PSO-FF) algorithms. These two algorithms are compared and the results are investigated under several performance measures. The simulation results stated that the PSO-FF algorithm has shown better results over the EMPSO algorithm under several measures.


Sign in / Sign up

Export Citation Format

Share Document