scholarly journals Aerodynamic study of the corrugated airfoil at ultra-low Reynolds number

2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988416
Author(s):  
Mahmoud E Abd El-Latief ◽  
Khairy Elsayed ◽  
Mohamed Madbouli Abdelrahman

In this study, Aeshna cyanea dragonfly forewing mid-cross-section corrugated airfoil was simulated at ultra-low Reynolds number. The corrugated airfoil was compared with its smooth counterpart to study the effect of the corrugations upon the aerodynamic performance. Unsteady two-dimensional laminar flow was solved using FLUENT. This study was divided into gliding phase and flapping phase. In the gliding phase, the corrugated airfoil produced a higher lift force with respect to the profiled airfoil at both tested Reynolds numbers ([Formula: see text], [Formula: see text]) with comparable drag coefficient for all the tested angles of attack. In the flapping phase, both the corrugated airfoil and the flat-plate have a very similar flow behavior which yields a very similar aerodynamic performance at Re[Formula: see text]. A structural analysis was performed to compare the corrugated airfoil with the flat-plate. The analysis revealed the superiority of the corrugated airfoil over the flat-plate in decreasing the deflection under the applied load. The reduced frequency was varied to study its impact on the aerodynamic performance. By increasing the reduced frequency, the thrust and the lift forces increased by [Formula: see text]% and [Formula: see text]%, respectively. Any increase in the reduced frequency will increase lift and thrust forces, but the propulsive efficiency will deteriorate.

2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2019 ◽  
Vol 11 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Y. D. DWIVEDI ◽  
Vasishta BHARGAVA ◽  
P. M. V. RAO ◽  
Donepudi JAGADEESH

Corrugations are folds on a surface as found on wings of dragon fly insects. Although they fly at relatively lower altitudes its wings are adapted for better aerodynamic and aero-elastic characteristics. In the present work, three airfoil geometries were studied using the 2-D panel method to evaluate the aerodynamic performance for low Reynolds number. The experiments were conducted in wind tunnel for incompressible flow regime to demonstrate the coefficients of lift drag and glide ratio at two Reynolds numbers 1.9x104 and 1.5x105 and for angles of attack ranging between 00 and 160. The panel method results have been validated using the current and existing experiment data as well as with the computational work from cited literature. A good agreement between the experimental and the panel methods were found for low angles of attack. The results showed that till 80 angle of attack higher lift coefficient and lower drag coefficient are obtainable for corrugated airfoils as compared to NACA 0010. The validation of surface pressure coefficients for all three airfoils using the panel method at 40 angles of attack was done. The contours of the non-dimensional pressure and velocity are illustrated from -100 to 200 angles of attack. A good correlation between the experiment data and the computational methods revealed that the corrugated airfoils exhibit better aerodynamic performance than NACA 0010.


2001 ◽  
Author(s):  
Miles Greiner ◽  
Paul F. Fischer ◽  
Henry Tufo

Abstract The effect of flow rate modulation on low Reynolds number heat transfer enhancement in a transversely grooved passage was numerically simulated using a two-dimensional spectral element technique. Simulations were performed at subcritical Reynolds numbers of Rem = 133 and 267, with 20% and 40% flow rate oscillations. The net pumping power required to modulate the flow was minimized as the forcing frequency approached the predicted natural frequency. However, mixing and heat transfer levels both increased as the natural frequency was approached. Oscillatory forcing in a grooved passage requires two orders of magnitude less pumping power than flat passage systems for the same heat transfer level. Hydrodynamic resonance appears to be an effective method of increasing heat transfer in low Reynolds number systems where pumping power is at a premium, such as micro heat transfer applications.


2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


Sign in / Sign up

Export Citation Format

Share Document