scholarly journals A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091918
Author(s):  
Linlin Xia ◽  
Jiashuo Cui ◽  
Ran Shen ◽  
Xun Xu ◽  
Yiping Gao ◽  
...  

As one of the typical application-oriented solutions to robot autonomous navigation, visual simultaneous localization and mapping is essentially restricted to simplex environmental understanding based on geometric features of images. By contrast, the semantic simultaneous localization and mapping that is characterized by high-level environmental perception has apparently opened the door to apply image semantics to efficiently estimate poses, detect loop closures, build 3D maps, and so on. This article presents a detailed review of recent advances in semantic simultaneous localization and mapping, which mainly covers the treatments in terms of perception, robustness, and accuracy. Specifically, the concept of “semantic extractor” and the framework of “modern visual simultaneous localization and mapping” are initially presented. As the challenges associated with perception, robustness, and accuracy are being stated, we further discuss some open problems from a macroscopic view and attempt to find answers. We argue that multiscaled map representation, object simultaneous localization and mapping system, and deep neural network-based simultaneous localization and mapping pipeline design could be effective solutions to image semantics-fused visual simultaneous localization and mapping.

Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3228 ◽  
Author(s):  
Yuwei Chen ◽  
Jian Tang ◽  
Changhui Jiang ◽  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
...  

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can’t meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.


2021 ◽  
Author(s):  
Salvador Ortiz ◽  
Wen Yu

In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM) method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic algorithm, our novel path planning method shows many advantages compared with other popular methods.


2016 ◽  
Vol 16 (2) ◽  
pp. 212-221
Author(s):  
Yingmin Yi ◽  
Xiangru Hu

Abstract The point of interest in this paper is the main content of autonomous navigation of robots. An algorithm for robot Simultaneous Localization And Mapping (SLAM) based on self-detected waypoint is introduced to realize robot’s mapping in its area of interest. Robot’s next step waypoint is performed using characteristics of large information in the area of interest and dense landmark, clustering the landmark in the area of interest, and guiding robot’s movement with clustered central point. Robot clusters the observed area in its observation every time. It takes the clustered center based on the largest number of landmarks as the waypoint of the next step. Simulation experiment shows, that due to robot’s movement toward the area of dense landmarks, the proposed method increases the number of landmarks observed by the robot and frequency of observation is increased. The proposed method enhances accuracy of robot’s positioning and the robot realizes to detect its waypoint autonomously.


Author(s):  
Olusanya Agunbiade ◽  
Tranos Zuva

The important characteristic that could assist in autonomous navigation is the ability of a mobile robot to concurrently construct a map for an unknown environment and localize itself within the same environment. This computational problem is known as Simultaneous Localization and Mapping (SLAM). In literature, researchers have studied this approach extensively and have proposed a lot of improvement towards it. More so, we are experiencing a steady transition of this technology to industries. However, there are still setbacks limiting the full acceptance of this technology even though the research had been conducted over the last 30 years. Thus, to determine the problems facing SLAM, this paper conducted a review on various foundation and recent SLAM algorithms. Challenges and open issues alongside the research direction for this area were discussed. However, towards addressing the problem discussed, a novel SLAM technique will be proposed.


Author(s):  
Jie Qian ◽  
Kaiqi Chen ◽  
Qinying Chen ◽  
Yanhong Yang ◽  
Jianhua Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document