Study of CO2 adsorption and separation using modified porous carbon
Porous carbon and La2O3/porous carbon materials are synthesized for the study of CO2 adsorption and separation by the volumetric method. The synthesized adsorbents are characterized by X-ray diffraction, N2 adsorption–desorption isotherms, Raman spectra and scanning electron microscopy with energy-dispersive X-ray analysis. Characterization results confirm the existence of porosity in the synthesized carbon materials and uniform distribution of lanthanum(III) oxide on porous carbon. The CO2 adsorption capacity for porous carbon and La2O3/porous carbon is 21 and 33 cm3 g−1, respectively, at 298 K and 1 bar. High adsorption of CO2 is obtained for La2O3/porous carbon because of the electrostatic interaction between La2O3 and CO2. Moreover, the N2 adsorption capacity is 2.8 cm3 g−1 for porous carbon and 2.2 cm3 g−1 for La2O3/porous carbon at 298 K and 1 bar. The change in N2 adsorption is due to the decrease in surface area. For La2O3/porous carbon, the selectivity of CO2/N2 is 33.5 and the heat of CO2 adsorption is 36.5 kJ mol−1 at low adsorption of CO2. It also shows constant CO2 adsorption capacity in each adsorption cycle.