Hmgb3 Induces the Differentiation of Uterine Stromal Cells Through Targeting Ptn

2018 ◽  
Vol 26 (7) ◽  
pp. 891-899
Author(s):  
Kai Wang ◽  
Yun-Hou Yin ◽  
Zhan-Qing Yang ◽  
Hai-Fan Yu ◽  
Yu-Si Wang ◽  
...  

Uterine decidualization is crucial for placenta formation and pregnancy maintenance. Although previous studies have reported that high mobility group box 3 (Hmgb3) is involved in the regulation of cellular proliferation and differentiation, little is known regarding its physiological role in uterine decidualization. Here, in situ hybridization result exhibited a dynamic expression pattern of Hmgb3 messenger RNA (mRNA) during early gestation, and it was mainly localized to the decidua on days 6 to 8 of gestation. Consistently, elevated Hmgb3 expression was noted in the decidualizing stromal cells after intraluminal oil infusion. In uterine luminal epithelium of ovariectomized mice, estrogen induced the accumulation of Hmgb3 mRNA, which was dependent on the existence of implanting blastocyst. Simultaneously, Hmgb3 could stimulate the proliferation of uterine stromal cells and promote the expression of Prl8a2, a reliable marker for stromal cell differentiation. Further analysis evidenced that Hmgb3 might modulate the expression of pleiotropin (Ptn) in uterine stromal cells. Moreover, silencing of Ptn could impede the upregulation of Prl8a2 elicited by Hmgb3 overexpression, while overexpression of Ptn reversed the repressive effects of Hmgb3 siRNA on Prl8a2 expression. Collectively, Hmgb3 may direct uterine decidualization through targeting Ptn.

2015 ◽  
Vol 27 (1) ◽  
pp. 145
Author(s):  
Y. Yoshimoto ◽  
Y. Yamamoto ◽  
Y. Kobayashi ◽  
I. Woclawek-Potocka ◽  
E. Sinderewicz ◽  
...  

The oviduct is an essential organ for successful pregnancy in mammals. The transport of gametes and early embryos is mainly induced by contraction and relaxation of smooth muscle. The contraction and relaxation of bovine oviductal smooth muscle are induced by prostaglandin (PG) F2α and PGE2, respectively. Lysophosphatidic acid (LPA), a type of phospholipid, is involved in various physiological actions such as promoting inflammation and cellular proliferation in various organs. LPA acts through at least 6 G protein-coupled receptors. Both LPA and LPA receptors are expressed in endometrium and, moreover, LPA affects PG production by the endometrium in cow. Based on the above findings, we hypothesised that LPA is locally involved in PG production by oviductal cells to promote motility of oviductal smooth muscle in cow. Oviductal samples ipsilateral to a corpus luteum or a dominant follicle at peri-ovulation (0–6 and 19–21 days after ovulation) were collected in abattoir. Messenger RNA expression of LPA receptors (LPAR1–6) and LPA-producing enzymes (ATX, PLA1α, PLA1β) was examined in ampullary and isthmic tissues. Expression in cultured epithelial and stromal cells isolated from the bovine oviduct were also examined to determine the cells possessing LPA receptors and LPA-producing enzymes. In addition, the effect of LPA (0.1, 1, 10 μM) on the expression of cyclooxygenase (COX)-1 and COX-2 (PG-synthesising enzymes) and on PGE2 and PGF2α production by cultured epithelial and stromal cells was investigated. The significant differences (P < 0.05) were determined by Student's t-test for 2 groups, and by one-way ANOVA followed by Tukey's multiple comparison test for more than 3 groups. LPAR1–6, ATX, PLA1α, and PLA1β were expressed in both ampullary and isthmic tissues as well as in both cultured epithelial and stromal cells. The expression of LPAR1–3 was significantly lower in the isthmic tissues than in the ampullary tissues, whereas the expression of LPAR4–6 was significantly higher in the isthmic tissues than in the ampullary tissues. The expression of COX-2 was significantly stimulated by 10 μM LPA in cultured isthmic stromal cells. In addition, LPA significantly stimulated both PGE2 and PGF2α production by cultured isthmic stromal cells. In the isthmus of the oviduct, LPA produced by epithelial and stromal cells may stimulate the expression of COX-2 in the stromal cells, followed by increased PG production. Because the mRNA expression of LPAR4–6 is higher in the isthmus than in the ampulla, those effects of LPA might be mediated by activation of LPAR4–6. The overall findings suggest that LPA is one of the regulating factors for transport of gametes and early embryos by controlling the motility of smooth muscle in the bovine oviduct.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2783-2783
Author(s):  
Youichi Aizawa ◽  
Nami Nogawa ◽  
Nobuyoshi Kosaka ◽  
Yasutaka Maeda ◽  
Takafumi Watanabe ◽  
...  

Abstract The regulation of hematopoiesis in non-mammalian vertebrates is poorly understood. This is partly because the structures and effects of most hematopoietic regulators have not been identified. As a first step towards studies on the key ingredient of hematopoietic regulation among phyla as well as the diversity of organisms, we have focused on amphibian hematopoiesis. In this study, a cDNA sharing the highest degree of homology with mammalian erythropoietin (EPO) receptors, named xeEPOR tentatively, was cloned from cDNA library of Xenopus immature erythrocytes. The identities of the deduced entire amino acid sequence to human and murine EPO receptors were 24% and 25%, respectively; whereas transmembrane region and motifs of WSXWS and Box1/2 domains were found in the molecule. The northern analysis revealed that two types of xeEPOR RNAs were expressed in normal peripheral blood cells. In addition, by in situ hybridization and immunostaining with monoclonal antibodies raised against the extracellular domain of xeEPOR (soluble xeEPOR), immature basophilic erythrocytes expressing xeEPOR appeared in peripheral blood of phenylhydrazine-treated adult Xenopus. The fulllength xeEPOR cDNA was introduced into murine FDC/P2 cells and the signaling for the cellular proliferation and differentiation was examined in the presence of serum derived from anemic Xenopus as a stimulator. To further understanding the contribution of the xeEPOR gene expression to primitive and definitive hematopoiesis on Xenopus development, whole mount in situ hybridization was performed. As the binding motif of GATA-1, the hematopoietic specific transcription factor, was located at −24 to −15 base upstream of the translation initiation sequence, the correlated expressions of xeEPOR and Xenopus GATA-1 on developing embryo were evaluated with RT-PCR. The xeEPOR RNA was abundantly expressed at Nieuwkoop stage 30 (blood island formation) and thereafter, and temporally followed the expression of GATA-1, suggesting that the functional expression of xeEPOR was upregulated by GATA-1 in Xenopus as reported in studies on mammalian erythropoiesis. To confirm biological functions of the molecule, soluble xeEPOR was administered into adult Xenopus by intracardiac consecutive injections. The peripheral erythrocyte counts were gradually decreased; meanwhile immature erythrocytes were emerged in the circulation, demonstrating that this molecule plays a significant physiological role in erythropoiesis in Xenopus.


2017 ◽  
Vol 44 (5) ◽  
pp. 1681-1695 ◽  
Author(s):  
Dang-Dang Li ◽  
Liang Yue ◽  
Zhan-Qing Yang ◽  
Lian-Wen Zheng ◽  
Bin Guo

Background/Aims: Hmgn2 is involved in regulating embryonic development, but its physiological function during embryo implantation and decidualization remains unknown. Methods: In situ hybridization, real-time PCR, RNA interference, gene overexpression and MTS assay were used to examine the expression of Hmgn2 in mouse uterus during the pre-implantation period and explore its function and regulatory mechanisms in epithelial adhesion junction and stromal cell proliferation and differentiation. Results: Hmgn2 was primarily accumulated in uterine luminal epithelia on day 4 of pregnancy and subluminal stromal cells around the implanting blastocyst at implantation sites on day 5. Similar results were observed during delayed implantation and activation. Meanwhile, Hmgn2 expression was visualized in the decidua. In uterine epithelial cells, silencing of Hmgn2 by specific siRNA reduced the expression of adhesion molecules Cdh1, Cdh2 and Ctnnb1 and enhanced the expression of Muc1, whereas constitutive activation of Hmgn2 exhibited the opposite effects, suggesting a role for Hmgn2 in attachment reaction during embryo implantation. Estrogen stimulated the expression of Hmgn2 in uterine epithelia, but the stimulation was abrogated by ER antagonist ICI 182,780. Further analysis evidenced that attenuation of Hmgn2 might eliminate the regulation of estrogen on the expression of Cdh1, Cdh2 and Ctnnb1. In uterine stromal cells, progesterone induced the accumulation of Hmgn2 which advanced the expression of Prl8a2 and Prl3c1, two well-known differentiation markers for decidualization, but did not affect the proliferation of stromal cells. Knockdown of Hmgn2 blocked the progesterone-induced differentiation of uterine stromal cells. Moreover, Hmgn2 might serve as an intermediate to mediate the regulation of progesterone on Hand2. Conclusion: Hmgn2 may play an important role during embryo implantation and decidualization.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Zhilong Wang ◽  
Yang Liu ◽  
Jingyu Liu ◽  
Na Kong ◽  
Yue Jiang ◽  
...  

AbstractDecidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma and is required to establish and support pregnancy. Dysregulated decidualization has been reported to be a critical cause of recurrent implantation failure (RIF). In this study, we found that Activating transcription factor 3 (ATF3) expression was significantly downregulated in the endometrium of RIF patients. Knockdown of ATF3 in human endometrium stromal cells (hESCs) hampers decidualization, while overexpression could trigger the expression of decidual marker genes, and ameliorate the decidualization of hESCs from RIF patients. Mechanistically, ATF3 promotes decidualization by upregulating FOXO1 via suppressing miR-135b expression. In addition, the endometrium of RIF patients was hyperproliferative, while overexpression of ATF3 inhibited the proliferation of hESCs through CDKN1A. These data demonstrate the critical roles of endometrial ATF3 in regulating decidualization and proliferation, and dysregulation of ATF3 in the endometrium may be a novel cause of RIF and therefore represent a potential therapeutic target for RIF.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 412-419 ◽  
Author(s):  
SJ Busfield ◽  
SP Klinken

The J2E cell line is a novel erythroid cell line that differentiates in response to erythropoietin (Epo), the physiologic stimulus for erythropoiesis. After exposure to Epo, the cells synthesize hemoglobin, and we show here that this process is tightly linked to increases in cellular proliferation and DNA synthesis. The hormone-induced terminal differentiation also results in morphologic alterations and the accumulation of transcripts for alpha, beta maj, and beta min globins. c-myc messenger RNA levels increase rapidly after exposure to Epo and precede the increase in cell division, while c-myb undergoes a transient decrease. Differentiation of J2E cells can also be achieved with sodium butyrate, but, in contrast with Epo, this is associated with a retardation of replication and a sudden decrease in c-myc levels. These results show that, in this system, chemically induced differentiation differs from terminal maturation promoted by Epo and that the processes of proliferation and differentiation in J2E cells can be uncoupled.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 412-419 ◽  
Author(s):  
SJ Busfield ◽  
SP Klinken

Abstract The J2E cell line is a novel erythroid cell line that differentiates in response to erythropoietin (Epo), the physiologic stimulus for erythropoiesis. After exposure to Epo, the cells synthesize hemoglobin, and we show here that this process is tightly linked to increases in cellular proliferation and DNA synthesis. The hormone-induced terminal differentiation also results in morphologic alterations and the accumulation of transcripts for alpha, beta maj, and beta min globins. c-myc messenger RNA levels increase rapidly after exposure to Epo and precede the increase in cell division, while c-myb undergoes a transient decrease. Differentiation of J2E cells can also be achieved with sodium butyrate, but, in contrast with Epo, this is associated with a retardation of replication and a sudden decrease in c-myc levels. These results show that, in this system, chemically induced differentiation differs from terminal maturation promoted by Epo and that the processes of proliferation and differentiation in J2E cells can be uncoupled.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2005 ◽  
Vol 173 (4S) ◽  
pp. 387-387
Author(s):  
Quan Wu ◽  
Jian-Dang Shi ◽  
Yu Liu ◽  
Ke-Ming Wang ◽  
Helmut Klocker ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muchen Pan ◽  
Ana L. Alvarez-Cabrera ◽  
Joon S. Kang ◽  
Lihua Wang ◽  
Chunhai Fan ◽  
...  

AbstractMammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Sign in / Sign up

Export Citation Format

Share Document