Transformation of magnetite to goethite under alkaline pH conditions

Clay Minerals ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Y. T. He ◽  
S. J. Traina

AbstractMagnetite is a redox active Fe oxide common in most soil and sedimentary environments. In this study, we investigated magnetite transformations under extreme alkaline conditions (0.1–2 mol l–1 NaOH) similar to those found under high-level radioactive waste storage tanks at the Hanford site in the State of Washington, USA. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that magnetite was transformed into maghemite and goethite, and the XRD peak intensities for goethite increased with NaOH concentration. Goethite was presumably formed through reconstructive dissolution/crystallization reactions that can be written as: Fe3O4 + OH– + H2O = γ-Fe2O3 + Fe(OH)3–; 2Fe(OH)3– + 1/2O2 + 2H+ = 2α-FeOOH + 3H2O. Some of the newly formed maghemite may also redissolve to form goethite at greater NaOH concentrations.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nayely Torres-Gómez ◽  
Osvaldo Nava ◽  
Liliana Argueta-Figueroa ◽  
René García-Contreras ◽  
Armando Baeza-Barrera ◽  
...  

In this work, we present a simple and efficient method for pure phase magnetite (Fe3O4) nanoparticle synthesis. The phase structure, particle shape, and size of the samples were characterized by Raman spectroscopy (Rm), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and transmission electron microscopy (TEM). The morphology tuning was controlled by the temperature of the reaction; the nanoparticles were synthesized via the hydrothermal method at 120°C, 140°C, and 160°C, respectively. The Rm and XRD spectra showed that all the nanoparticles were Fe3O4 in a pure magnetite phase. The obtained nanoparticles exhibited a high level of crystallinity with uniform morphology at each temperature, as can be observed through TEM and SEM. These magnetic nanoparticles exhibited good saturation magnetization and the resulting shapes were quasi-spheres, octahedrons, and cubes. The samples showed striking magnetic properties, which were examined by a vibrating sample magnetometer (VSM). It has been possible to obtain a good morphological control of nanostructured magnetite in a simple, economical, and scalable method by adjusting the temperature, without the modification of any other synthesis parameter.


1994 ◽  
Vol 353 ◽  
Author(s):  
Peter J McGlinn ◽  
K. P. Hart ◽  
E. H. Loi ◽  
E. R. Vance

AbstractPerovskite and zirconolite are two of the major phases of the Synroc titanate mineral assemblage. Their aqueous durability under a range of pH conditions at 90°C has been examined. Solution analysis, electron microscopy and X-ray diffraction have been used to investigate the dissolution behaviour of these phases, and a perovskite phase doped with Nd, Sr and Al, using buffered solutions at pH levels of 2.1, 3.7, 6.1, 7.9 and 12.9. After 43 days of leaching, Ca and Ti extractions from perovskite and zirconolite show only a weak pH-dependence.SEM investigation of the samples leached at pH 2.1, 6.1 and 12.9 showed that a titanaceous surface layer formed on the perovskite specimens. XRD analysis of the perovskite samples showed that anatase formed on the leached surface at acidic and neutral pHs, but not under alkaline conditions, and that minor amounts of rutile also formed. In the leached perovskite specimens doped with Nd, Sr and Al, no rutile was found by XRD and anatase was only detected in the sample leached at pH 2.1. There were no detectable changes in the leached zirconolite samples examined by SEM and XRD.


2007 ◽  
Vol 62 (12) ◽  
pp. 754-760
Author(s):  
Chao-Chen Yang ◽  
Min-Fong Shu

The electrochemical behaviour of zinc on copper, platinum, and tungsten working electrodes was investigated in a binary ZnCl2-DMSO2 room temperature molten salt electrolyte in the temperature range of 60 - 80◦C. Various over-potentials, −0.1, −0.2, −0.3, −0.4, and −0.5 V, were chosen as deposition potentials. The nucleation/growth of zinc changed from progressive to instantaneous if the over-potentials increased from low to high level. The surface morphology and crystal structure of the deposited layer were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Moreover, larger grain size and hexagonal close packing of the zinc layer at −0.5 V were observed by transmission electron microscopy (TEM) with electron diffraction mapping.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Lingxiao Chen ◽  
Hang Liu ◽  
Linghao Liu ◽  
Yifan Zheng ◽  
Haodong Tang ◽  
...  

Ni nano-micro structures have been synthesized via a solution reduction route in the presence of ethylenediamine (EDA) under strong alkaline conditions. The phase composition, morphology, and microstructure of the resulting products are investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The presence of EDA plays an important role in the formation of Ni nano-micro structures, and microflowers or microspheres assembled from nanosized horns can be produced by changing the amount of EDA. The size of Ni nano-micro structures is dependent on the NaOH concentration, and long chains assembled from Ni nano-micro structured microspheres can be obtained by reducing the amount of NaOH solution used. The role of both EDA and NaOH in the reduction of Ni (II) to Ni, as well as in the growth of Ni nano-micro structures, has been discussed, and a possible formation mechanism of these Ni nano-micro structures has been proposed based on the experimental results.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Jun Sun ◽  
Bin Xu ◽  
Yu Shi ◽  
Lin Yang ◽  
Hai-le Ma

The aim of this study was to develop a thermally and operationally stable trypsin through covalent immobilization onto chitosan magnetic nanoparticles (Fe3O4 @CTS). The successful preparation of the Fe3O4 @CTS nanoparticles was verified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), which indicated that the prepared Fe3O4 @CTS nanoparticles have superparamagnetic properties, with an average size of approximately 17 nm. Then, trypsin was covalently immobilized onto the Fe3O4 @CTS nanoparticles at a high loading capacity (149.25 mg/g). The FTIR data demonstrated that the trypsin had undergone a conformational change compared with free trypsin, and the Michaelis constant (Km) and the maximum hydrolysis reaction rate (Vmax) showed that the trypsin immobilized on the Fe3O4 @CTS had a lower affinity for BAEE and lower activity compared with free trypsin. However, the immobilized trypsin showed higher activity than free trypsin at pH 6.0 and in alkaline conditions and retained more than 84% of its initial activity at 60°C after 8 h incubation. Its excellent performance across a broader pH range and high thermal stability, as well as its effective hydrolysis of bovine serum albumin (BSA) and its reusability, make it more attractive than free trypsin for application in protein digestion.


2004 ◽  
Vol 824 ◽  
Author(s):  
A.V. Ochkin ◽  
S.V. Stefanovsky ◽  
A.G. Ptashkin ◽  
N.S. Mikhailenko ◽  
O.I. Kirjanova

AbstractTwo ceramics for immobilization of a Zr-REE-actinide fraction of high level waste (HLW) based on zirconolite or/and pyrochlore structures with minor brannerite/lucasite, and fluorite-structured dioxide-based solid solution, were synthesized and characterized. The samples were produced by melting of oxide mixtures at 1500 °C followed by controlled cooling for crystallization. Phase compositions of the samples obtained and waste elements partitioning among co-existing phases were investigated in detail using powder X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy. Cerium enters cerianite-based solid solution, lucasite (if present), and to a lesser extent, pyrochlore and zirconolite. Europium and gadolinium enter predominantly zirconolite and pyrochlore. The highest uranium concentrations were found in a uraninite-based cubic solid solution or pyrochlore and zirconolite.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


Sign in / Sign up

Export Citation Format

Share Document