scholarly journals CD33 BiTE ® Construct Mediated Immunological Synapse Formation and Downstream Signaling in T Cells Is Dependent on Expression of Costimulatory Molecules on Target Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2237-2237
Author(s):  
Anetta Marcinek ◽  
Bettina Brauchle ◽  
Gerulf Hänel ◽  
Sonja M Lacher ◽  
Nora Zieger ◽  
...  

Abstract BiTE ® (Bispecific T-cell Engager) constructs represent a novel immunotherapeutic strategy that recruits T cells against cancer cells independent of their TCR specificity. Currently, two CD33xCD3 BiTE ® antibody constructs (AMG 330 & AMG 673) are being investigated in phase I dose escalation trials in patients with relapsed/refractory Acute Myeloid Leukemia (AML) with early evidence of acceptable safety and anti-leukemic activity (Ravandi et al., ASH 2020; Subklewe et al., EHA 2020). So far, details of BiTE ® mediated T-cell engagement and information on parameters contributing to their efficacy need more investigation. Therefore, we aimed to characterize the interplay between target and effector cells to deepen our mechanistic understanding of BiTE ® construct mediated T-cell engagement. Previously, we have created a novel in vitro model system with murine Ba/F3 cells expressing human (hu) CD33 ± huCD80 ± huCD86 ± huPD-L1 to study T-cell proliferation and cytotoxicity induced by AMG 330. Using that system, we showed that expression of T-cell co-signaling receptors on target cells modulate AMG 330 induced T-cell activity (Marcinek et al., ASH 2018, EHA 2019). Here, we hypothesize that expression of costimulatory molecules impacts BiTE ® mediated immune synapse formation and consecutive downstream signaling in BiTE ® construct activated T cells. To study whether AMG 330 can induce synapse formation and TCR triggering we used a previously described reconstituted T-cell system, which consists of non-immune (HEK) cells introduced with genes encoding the TCR and other proteins (e.g. CD45) required for the regulation of TCR phosphorylation (James et al., Nature 2012). HEK-T cells were incubated with huCD33 transduced RajiB cells in presence of fluorescently labeled AMG 330 or a control BiTE® (cBiTE) construct to allow cell conjugation. A spinning disc confocal microscope system was used to image cells. To pinpoint the role of T-cell co-signaling receptors in immune synapse formation we incubated differentBa/F3 cell constructs or primary AML (pAML) cells with healthy donor T cells in the presence of AMG 330 and analyzed intensity of LFA-1 expression within the synapse using an Imaging Flow Cytometer. Furthermore, we determined phosphorylation of ZAP70, AKT and ERK in conjugated T cells after various time points by phosphoflow cytometry. We observed that AMG 330, in contrast to cBiTE®, induced TCR triggering reflected by exclusion of CD45 from the RajiB-T-cell-interface. Simultaneously clustering of CD33 occurred in AMG 330 induced cell-cell-interfaces (Fig. 1A/B). The percentage of conjugates formed with huCD33 + Ba/F3 cells was significantly higher in constructs expressing huCD86, compared to those expressing no costimulatory antigens or additional huPD-L1 (Mean % in huCD33 + Ba/F3: 2.8 vs. huCD33 + CD86 +.Ba/F3: 4.2 [p=0.0031] vs. huCD33 + huCD86 + PD-L1 + Ba/F3: 2.8 [p=0.0018]). This was accompanied by LFA-1 accumulation within the T-cell-Ba/F3 cell synapse (Mean of MFI in huCD33 + CD86 +.Ba/F3: 10,933 > huCD33 + huCD86 + PD-L1 + Ba/F3: 7,749 > huCD33 + Ba/F3: 7,028). For downstream signaling in T cells after engagement with Ba/F3 cell constructs in the presence of AMG 330, we observed that kinase phosphorylation was highest after 10 minutes in CD86 co-expressing Ba/F3 cells (Mean % of phosphorylation in T-cell conjugates with huCD33 + vs huCD33 + huCD86 + vs huCD33 + CD86 +.PD-L1 + Ba/F3: pERK 40.9 vs 54.3 [p=0.0064] vs 51.2 %; pAKT: 69.1 vs 81.5 [p=0.0642] vs 75.1 %; pZAP70: 6.9 vs 12.2 [p<0.0001] vs 7.7 % [p<0.0001]) (Fig. 1C). Finally, we evaluated if these finding could also be observed in pAML samples. For that, we determined LFA-1 expression intensity within AMG 330-induced pAML-T-cell synapses. We used CD33 + pAML samples with either high CD86 and no PD-L1 expression or vice versa. Comparing synapse formation between these samples, LFA-1 intensity was 4.6-fold higher in the CD86 + PD-L1 - sample compared to the CD86 - PD-L1 + pAML. Taken together, our data unravel molecular mechanisms of BiTE® construct induced immune synapse formation, highlighting the role of costimulatory molecules in this process. They support the notion that T cell co-signaling receptors like CD86 and PD-L1 modulate T-cell response in an early event manner. Prospective analyses in clinical trials are needed to validate the relevance of checkpoint molecule expression on target cells as a potential predictive biomarker for response. Figure 1 Figure 1. Disclosures Brauchle: Adivo: Current Employment. Lacher: Roche: Research Funding. Kischel: Amgen GmbH Munich: Current Employment. von Bergwelt: Roche: Honoraria, Research Funding, Speakers Bureau; Miltenyi: Honoraria, Research Funding, Speakers Bureau; Mologen: Honoraria, Research Funding, Speakers Bureau; Kite/Gilead: Honoraria, Research Funding, Speakers Bureau; Novartis: Honoraria, Research Funding, Speakers Bureau; Astellas: Honoraria, Research Funding, Speakers Bureau; MSD Sharpe & Dohme: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding, Speakers Bureau. Theurich: Amgen: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria; GSK: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Buecklein: Novartis: Consultancy, Other: congress and travel support, Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria, Speakers Bureau; Miltenyi: Research Funding; Kite/Gilead: Consultancy, Honoraria, Other: Congress and travel support, Research Funding; BMS/Celgene: Consultancy, Research Funding; Amgen: Consultancy, Honoraria. Subklewe: Janssen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Roche: Research Funding; Novartis: Consultancy, Research Funding, Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; Klinikum der Universität München: Current Employment; Takeda: Speakers Bureau; MorphoSys: Research Funding; Miltenyi: Research Funding; Gilead: Consultancy, Research Funding, Speakers Bureau; Amgen: Consultancy, Research Funding, Speakers Bureau; BMS/Celgene: Consultancy, Research Funding, Speakers Bureau.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 132-132
Author(s):  
Shok Ping Lim ◽  
Donal McLornan ◽  
Nikolaos Ioannou ◽  
David Darling ◽  
Alan G. Ramsay ◽  
...  

Abstract Introduction MicroRNAs (miRNAs) are short endogenous non-coding RNAs consisting of 18-25 nucleotides in length which influence gene expression and play pivotal roles in a diverse range of cellular processes. Aberrant miRNA expression has been implicated in a variety of cancers, including haematological malignancies. The miR-181 family plays a crucial role in haematopoiesis, including megakaryocytic, erythroid and myeloid differentiation and both B and T cell development and differentiation. We therefore focused our study on validating novel downstream targets of miR-181. Methods A novel functional assay utilising an optimised 3'UTR enriched library and a dual selection strategy (Gäken et al., 2012) was performed to identify biologically relevant targets of miR-181c. BRK1 (BRICK1, SCAR/WAVE Actin Nucleating Complex Subunit) was identified as a potential target and validation was performed by quantitative real time PCR and western blot analysis. Given the potential role of BRK1 in the Wiskott-Aldrich Syndrome Protein Family Verprolin-Homologous Protein-2 (WAVE2) complex and actin polymerisation in T cells, we investigated the influence of the miR-181c-BRK1 axis on T cell function. Knockdown of BRK1, using short hairpin RNA (shRNA) lentiviral vectors, and overexpression of miR-181c, via transfection with miR-181c expression vectors, were performed in Jurkat and primary T cells. T cell activation was examined by measurement of CD69 and CD154 expression and actin polymerisation was quantified by total cellular F-actin content. Immune synapse formation was studied by conjugate formation between T cells and antigen-pulsed B cells. Lastly, lamellipodia formation was investigated by assessing the ability of T cells to spread on anti-CD3 coated slides. Results Target genes downregulated by miR-181c were identified. One such target was BRK1, a component of the WAVE2 complex that has been shown to play a pivotal role in actin polymerisation. Validation experiments showed that overexpression and inhibition of miR-181c had no impact on BRK1 mRNA expression but did in fact modulate protein expression, suggesting that miR-181c regulates BRK1 at the translational level. We demonstrated that primary T cell activation resulted in downregulation of miR-181c and upregulation of BRK1 protein expression, further strengthening our hypothesis that the miR-181c-BRK1 axis may play an important role in T cell activation. Next, we found that loss of BRK1 resulted in reduced T cell activation as shown by decreased expression of CD69 and CD154. Furthermore, we showed that downregulation of BRK1 expression by shRNA resulted in reduced actin polymerisation after T cell stimulation. Reduced expression of BRK1 led to a marked reduction in the total area (in square micrometers) of F-actin accumulation at T cell contact sites and synapses with B cells indicating defective immune synapse formation. Moreover, reduced BRK1 expression resulted in defect in lamellipodia formation in response to T cell receptor stimulation. Similarly, ectopic expression of miR-181c in Jurkat T cells also led to a reduction in T cell activation and actin polymerisation coupled with defects in immune synapse and lamellipodia formation, hence confirming the important role of the miR-181c-BRK1 axis in T cell activation. Lastly, we demonstrated that suppression of BRK1 induced reduced expression of other pivotal proteins in the WAVE2 complex including WAVE2, Abi1 and Sra1. This suggests that impairment of actin polymerisation-dependent T cell functions were a result of instability of the WAVE2 complex following BRK1 suppression. Conclusion For the first time, we hereby demonstrate that BRK1 is a target of miR-181c. Moreover, we have highlighted the potential role of the miR-181c-BRK1 axis in impaired actin polymerisation-dependent T cell function and immune synapse formation. Deregulation of the miR-181c-BRK1 axis requires further evaluation in haematological malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 313-313
Author(s):  
Fabienne McClanahan ◽  
Cristina Ghirelli ◽  
Paul Greaves ◽  
John C. Riches ◽  
Rita Coutinho ◽  
...  

Abstract Abstract 313 Background: We have previously demonstrated that CD4 and CD8 T-cells from CLL patients show profound dysfunctions in multiple gene pathways, including the actin cytoskeleton, which impairs the formation of functional immunologic synapses between T cells and APCs. Functional screening assays on Mec-1 cells have identified CD200, CD270, CD274, and CD276 as inhibitory ligands which induce impaired actin synapse formation in both allogeneic and autologous T cells. We also demonstrated that the Eμ-TCL1 transgenic mouse model of CLL closely resembles the T-cell defects observed in humans, validating it as a valuable preclinical tool to examine changes in the microenvironment alongside the development of leukaemia. The aim of the current study is to investigate the role of CD200, CD270, CD274, and CD276 in the Eμ-TCL1 model. Methods: We used multiparameter flow cytometry to establish the expression of inhibitory ligands on CD19+/CD5+ unpurified splenocytes from Eμ-TCL1 mice on both the C57Bl/6 (B6) and the C3HB6-F1 background and compared this to unpurified splenocytes from age matched wild-type (WT) controls of the respective coisogenic strain. Results: A total of 19 leukemic Eμ-TCL1 (n=10 C57Bl/6 and n=9 C3HB6-F1 background) and 11 WT mice (n=6 C57Bl/6 and n=5 C3HB6-F1 background) were examined. CD19+/CD5+ CLL cells constituted 92% (range 62–97%) of the DAPI-negative lymphocyte population. On CD19+/CD5+ CLL cells, CD274 (mean 98% ± SEM 0.4) and CD200 (mean 84% ± SEM 2.9 were uniformly strongly expressed, while CD270 (mean 74% ± SEM 4.7) and CD276 (mean 50% ± SEM 6.6) showed a weaker and more diverse expression, with no significant differences between the two backgrounds (all p>.05). Similar expression patterns were observed in Eμ-TCL1 mice with spontaneously occurring CLL and transplanted transgenic mice, with no differences between spontaneous and induced CLL (all p>.05). We then compared transgenic CD19+/CD5+ CLL cells to the WT CD19+ and the WT CD19+/CD5+ B1a-like cell population. Eμ-TCL1 CLL splenocytes showed a significant higher expression of CD274 and CD276 compared to expression on WT CD19+ (p<.0001, p=.00349) splenocytes. When compared to WT B1a-like splenocytes, only CD274 was significantly higher expressed (p<.0001). To clarify the impact of genetic strain, B6 and C3HB6-F1 were investigated separately: transgenic mice on the B6 background showed significantly higher expression of CD274 compared to WT B6 CD19+ (p=.0015) and WT B6 B1a-like (p<.0001) splenocytes. In contrast, transgenic mice on the C3HB6-F1 background showed a significant higher expression of CD274 and CD276 compared to WT CD19+ (p=.0002, p=.00354) and WT B1a-like (p=.0005, p=.00384) splenocytes. These patterns substantiate differences of the expression of inhibitory ligands between the WT strains, but of note, these were not mirrored in TCL1 mice. In previous experiments, we used the Eμ-TCL1 model to investigate the polarization of F-actin and phosphotyrosine at the immune synapse between splenic autologous T-cells and APCs and subsequent effector function. Age-matched WT mice had a significantly higher accumulation than transgenic mice. To assess the functional role of inhibitory ligands, knock-down experiments using lentiviral shRNA and blocking antibodies are currently under way to assess if this restores immune synapse formation and T cell effector function in vivo. Conclusions: The inhibitory ligands CD200, CD270, CD274 and CD276 are expressed in vivo and appear to be of functional relevance for the anti-cancer immune response. They therefore represent attractive targets to restore T-cell effector function, which might be achieved by gene therapy approaches and blocking antibodies. Disclosures: Gribben: Celgene: Honoraria.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


2004 ◽  
Vol 200 (10) ◽  
pp. 1279-1288 ◽  
Author(s):  
Jean-François Arrighi ◽  
Marjorie Pion ◽  
Eduardo Garcia ◽  
Jean-Michel Escola ◽  
Yvette van Kooyk ◽  
...  

Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC–T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient. Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA–expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN− DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC–T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 696-696
Author(s):  
Alan G. Ramsay ◽  
Andrew James Clear ◽  
Alexander Davenport ◽  
Rewas Fatah ◽  
John G. Gribben

Abstract Abstract 696 The ability of cancer cells to modulate the immune microenvironment is now recognized as an important hallmark of disease pathophysiology. Identifying the molecular mechanisms of cancer immune suppression in the laboratory is key to the design of more effective immunotherapeutic treatment strategies. We previously demonstrated that chronic lymphocytic leukemia (CLL) cells induce alterations in global gene expression profiles in patient CD4 and CD8 T cells, and a profound T cell immunological synapse formation defect that can be reversed with lenalidomide (J Clin Invest. 2005;115(7):1797-1805, and 2008;118(7):2427-2437). Here we used small interfering RNA (siRNA) with a 2-part functional screen to identify key CLL cell molecules inducing T cell immune suppression. siRNA treated tumor cells were cocultured in direct contact with healthy allogeneic T cells for 24 hours, T cells purified from coculture and used in cell conjugation immune synapse assays with superantigen-pulsed third party B cells as antigen-presenting cells (APCs). Confocal microscopy and image analysis software was used to quantify the mean area of T cell F-actin immune synapse formation events from each experimental cell population. Treatment of the CLL cell line MEC-1 with either TNFα, TGFβ, IL-10, or IL-6 siRNA identified no gain in subsequent CD3 T cell immune synapse function compared to control non-targeting siRNA or untreated CLL cells. However, CD200 or programmed death 1 (PD1) ligand 1 (PD-L1, CD274) siRNA treatment significantly enhanced (P < .01) subsequent T cell synapse formation events with APCs (comparable to positive control experiments blocking tumor cell:T cell direct contact with ICAM-1 siRNA, or primary coculture of T cells with allogeneic healthy donor B cells). Primary CLL patient cells (n=10) were treated with individual or pooled neutralizing antibodies, or siRNA, targeting PD-L1, CD200, or cytokines. This analysis revealed that counteracting the combined activity of PD-L1, CD200 and TGFβ exhibited the most pronounced repair of subsequent T cell synapse function compared to control treated tumor cells (P < .01). These data suggest that CLL-released cytokines such as TGFβ contribute to, but are not essential for the T cell synapse defect. We also identified that blocking the T cell receptors PD-1, CD200-R and TGFβ-R1 with neutralizing antibodies prevents CLL inhibitory signaling (P < .01) compared to isotype control IgG treated T cells in contact with tumor cells. We further show that knock-down of PD-L1, CD200 and TGFβ on ex vivo CLL cells prevents inhibitory CD4 and CD8 T cell synapse function compared to control siRNA (P < .01) using the Eμ-TCL1 mouse model of CLL. The addition of lenalidomide (1μM) in ex vivo CLL cell:T cell coculture assays significantly increased (P < .01) subsequent T cell synapse function compared to untreated vehicle control experiments. Flow cytometric analysis identified that lenalidomide down-regulates both CLL expressed PD-L1 and CD200 ligands, and T cell cognate receptor PD1 and CD200R expression during intercellular contact interactions. Moreover, subsequent effector T cell killing function was significantly enhanced (P < .05) following antibody blockade of CLL cell PD-L1 and CD200 with or without lenalidomide treatment during primary coculture with CD8 T cells. We are currently investigating the expression and activity of PD-L1, CD200, and other co-inhibitory molecules in CLL and other haematological and solid malignancies, using patient tissue microarray analysis and confocal co-localization analysis. This work is identifying common inhibitory ligands utilized by tumor cells to suppress T cell synapse function. These results provide important mechanistic insight into immune suppression in CLL and the action of lenalidomide, and identify co-inhibitory ligands as potential immunotherapeutic targets to repair T cell function. Disclosures: Gribben: Roche: Consultancy; Celgene: Consultancy; GSK: Honoraria; Napp: Honoraria.


2019 ◽  
Author(s):  
Shunsuke Kataoka ◽  
Priyanka Manandhar ◽  
Creg J. Workman ◽  
Hridesh Banerjee ◽  
Andrea L. Szymczak-Workman ◽  
...  

AbstractExpression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic T cell activation, including in chronic infection and solid tumors. We and others previously reported that Tim-3 exerts apparently paradoxical co-stimulatory activity in T cells (and other cells), including enhancement of ribosomal S6 protein phosphorylation (pS6). Here we examined the upstream signaling pathways that control Tim3-mediated increases in pS6 in T cells. We have also defined the localization of Tim-3 relative to the T cell immune synapse and impacts on downstream signaling. Recruitment of Tim-3 to the immune synapse was regulated exclusively by the transmembrane domain, replacement of which impaired Tim-3 co-stimulation of pS6. Strikingly, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in the context of a chimeric antigen receptor still allowed for robust T cell activation. Our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2302-2302
Author(s):  
Anne-Charlotte Le Floch ◽  
Caroline Imbert ◽  
Aude De Gassart ◽  
Florence Orlanducci ◽  
Aude Le Roy ◽  
...  

Abstract Introduction Vγ9Vδ2 T cells are new promising cytotoxic effectors in hematological malignancies. In acute myeloid leukemia and in non-Hodgkin lymphomas, Vγ9Vδ2 T cells-based immunotherapy has shown encouraging results both in preclinical models and in early phase clinical trials. Acute lymphoblastic leukemia (ALL) includes very heterogeneous clinico-biological entities, for which recent immunotherapy approaches are currently being developed. Nevertheless, global prognosis of ALL patients still be poor with a 5 years-overall survival of less than 40% and therefore, treatments need to be improved. Very few data are currently available on susceptibility of ALL blasts to Vγ9Vδ2 T cell cytotoxic activity. Vγ9Vδ2 T cells are activated by phosphoantigens bound to BTN3A1 on target cells. BTN3A molecules are targeted at clinical level, with the ICT01 agonist monoclonal antibody (mAb), that is currently tested in a multicentric phase ½ study (EVICTION study). Biology of Vγ9Vδ2 T cells has recently undergone a new paradigm with the identification of BTN2A1 as the direct ligand for Vγ9 chain of γδ TCR. BTN2A1 is mandatory for Vγ9Vδ2 T cell activation but its precise role in modulating functions of Vγ9Vδ2 T cells remains unknown. Here, we show that allogenic and autologous Vγ9Vδ2 T cells exert cytolytic functions against ALL cell lines and primary ALL blasts, and we report that Vγ9Vδ2 T cell cytotoxic activity is enhanced after treatment with a unique agonist mAb targeting BTN2A1. Material and methods 5 ALL cell lines (697, RS4;11, NALM-6, HPB-ALL, SUP-T1) and PBMC from 11 adults ALL patients at diagnosis (B-ALL, T-ALL and Ph+ ALL) were tested in functional assays. We evaluated apoptosis of ALL cell lines and of primary ALL blasts after coculture with allogenic Vγ9Vδ2 T cells. ALL samples were also tested for their expansion capacities and a degranulation assay was performed at D14. We assessed in parallel relative quantification of the level expression of BTN2A1 (ICT0302 and 7.48 epitopes), and BTN3A (20.1 and 108.5 epitopes) on surface of ALL blasts. DAUDI-BTN2AKO+2A1 and HEK293-BTN2AKO+2A1 cells were used in binding assays, and modulation of TCR binding was assessed using recombinant tetramerized Vγ9Vδ2 TCR. Results We showed that Vγ9Vδ2 T cells exert spontaneous cytotoxicity against ALL cell lines and primary ALL blasts with a heterogeneous susceptibility depending on the target. We demonstrated that anti-BTN2A1 ICT0302 agonist mAb significantly enhanced Vγ9Vδ2 T cells mediated apoptosis in comparison to control condition, even for the less spontaneously susceptible cells. We confirmed these observations with degranulation of autologous Vγ9Vδ2 T cells expanded from 5 ALL patients at diagnosis that was increased after treatment with anti-BTN2A1 ICT0302 agonist mAb. BTN3A and BTN2A1 were detected on surface of ALL blasts, and BTN3A 108.5 was the most expressed epitope. Interestingly, we observed that anti-BTN2A1 ICT0302 strongly increased binding of a recombinant Vγ9Vδ2 TCR to target cells using with HEK293 and DAUDI cells. Discussion Our results highlighted that Vγ9Vδ2 T cells exert cytolytic functions against ALL cells, both in allogenic and autologous setting and demonstrated that BTN2A1 targeting with our unique agonist mAb could potentiate effector activities of Vγ9Vδ2 T cells against ALL blasts. These results indicate that the sensitization of leukemic cells can be induced by activation BTN3A as well as BTN2A1 mAbs. These data bring novel understanding on the biology of BTN2A1 on leukemic cells and our ability to enhance both binding and function. These findings could be of great interest for the design of innovative Vγ9Vδ2 T cells-based immunotherapy strategies for treating ALL that could be extended to other cancer types. Disclosures De Gassart: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Vey: Amgen: Honoraria; BMS: Honoraria; BIOKINESIS: Consultancy, Research Funding; NOVARTIS: Consultancy, Honoraria, Research Funding; SERVIER: Consultancy; JAZZ PHARMACEUTICALS: Honoraria; JANSSEN: Consultancy. Cano: ImCheck Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company. Olive: Emergence Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Alderaan Biotechnology: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; ImCheck Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: Anti-BTN2A1 ICT0302 is a murine agonist monoclonal antibody targeting BTN2A1 whose aim is to increase Vgamma9Vdelta2 T cells functions.


2020 ◽  
Author(s):  
Chiara Cassioli ◽  
Anna Onnis ◽  
Francesca Finetti ◽  
Nagaja Capitani ◽  
Ewoud B Compeer ◽  
...  

ABSTRACTComponents of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are exploited by the non-ciliated T cell to orchestrate polarized endosome recycling to sustain signaling during immune synapse formation. Here we have investigated the potential role of BBS1, an essential core component of the Bardet-Biedl syndrome complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We show that BBS1 allows for centrosome polarization towards the immune synapse by promoting its untethering from the nuclear envelope. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH, a process that we demonstrate to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that acts upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 852-852 ◽  
Author(s):  
Saad S Kenderian ◽  
Marco Ruella ◽  
Olga Shestova ◽  
Michael Klichinsky ◽  
Miriam Y Kim ◽  
...  

Abstract Chimeric antigen receptor T cell (CART) therapy has developed as a powerful and potentially curative therapy in hematological malignancies over the last few years. CD19 directed CART cells have resulted in impressive complete response rates of ~90% in acute lymphoblastic leukemia that are durable for the majority of patients. However, the overall response rates in other malignancies such as chronic lymphocytic leukemia are around 50%. This could be partially related to CART exhaustion and dysfunction induced by leukemia cells. In this study, we aim to evaluate the role of inhibitory receptors/pathways in inducing CART cell dysfunction and exhaustion in hematological malignancies. As a tumor model, we used an acute myeloid leukemia (AML) cell line (MOLM14) and primary AML samples and treated them with CD33 or CD123 directed CART cells (second generation CARs using 4-1BB and CD3z signaling domains and a lentiviral vector). Incubation of primary AML samples or MOLM14 cell line with CD33 or CD123 directed CARTs resulted in a significant up-regulation of PD-L1 on tumor cells after 24 hours of incubation (0% on day 0 vs 80% on day 1, P <0.001), and up-regulation of PD-1 and TIM-3 on T cells 3-7 days post co-culture (8% of T cells expressed PD-1 on day 0 vs 43% on day 3, P=0.03 and 13% of T cells expressed TIM-3 on day 0 vs 71% on day 3, p=0.001, Figure 1). For in vivo experiments, we used NSG (NOD-SCID-g-/-) mice and engrafted them with the MOLM14 cell line. Treatment of these AML xenografts with suboptimal doses of CD33 or CD123 CARTs resulted in initial anti-tumor responses, followed by disease relapses in 40-60% of the mice (Figure 2A). T cells were isolated from the bone marrow of these mice and analyzed for differential expression of inhibitory receptors. There was a significantly increased up-regulation of TIM-3 receptors on T cells isolated from mice with relapsed disease compared with T cells isolated from mice in remission after CART cell therapy (Figure 2B). Next, we investigated the role of adding checkpoint blockade to improve T cell function ex vivo after CART cell therapy. Marrows of mice that relapsed after CART cell therapy contained both residual CART cells and leukemia and were used to model the administration of checkpoint blockade in the setting of CART cell exhaustion. Cells were cultured with PD-1 or TIM-3 blocking antibodies or the combination of both (10 ug/ml for 72 hours). CART cell effector functions such as cytokine production and Ki-67 proliferation marker improved in the presence of checkpoint antagonists especially when both PD-1 and TIM-3 blocking antibodies were combined (figure 2C). Finally, we tested the combination of checkpoint blockade with CARTs in AML xenografts. In this approach, we treated MOLM14 xenografts with suboptimal doses of CD33 or CD123 directed CARTs or with control untransduced T cells (UTD), with or without checkpoint blocking antibodies. NSG mice bearing MOLM14 AML xenografts were established. Engraftment was confirmed by bioluminescent imaging. The tumor bearing mice were then treated with suboptimal doses (0.25-0.5 x106 total T cells I.V) of CD33 or CD123 directed CARTs or with control untransduced T cells (UTD). Mice also received PD-1 blockade, TIM-3 blockade or the combination of both on days 3, 6, 9 and 12 post T cell therapy, with the rationale for early checkpoint blockade being based on our in vitro observations of early upregulation of inhibitory ligands on AML after exposure to CART cells. Mice were then followed with serial imaging to assess disease burden. The addition of checkpoint antagonists to untransduced T cells, in particular anti-TIM3, did not lead to an anti-leukemic effect. However, the addition of PD-1 or TIM-3 blockade to CART cell therapy resulted in a synergistic anti-tumor activity as shown in Figure 3. The durable complete response rate was: 45% for treatment with CART123 alone, 80% for treatment with CART123+PD-1 blockade, 100% for treatment with CART123+TIM-3 blockade, and 80% for treatment with CART123+ both PD-1 and TIM-3 blockade). Our preclinical results indicate that PD-1 and TIM-3 pathways are involved in CART exhaustion and dysfunction in AML. Combination of checkpoint inhibitors with CART cells may lead to enhanced efficacy in AML and other hematological malignancies. Current studies are investigating mechanisms of synergy and the role of these combinations in other hematological malignancies. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Kenderian: Novartis: Patents & Royalties, Research Funding. Ruella:Novartis: Patents & Royalties, Research Funding. Porter:Novartis: Patents & Royalties, Research Funding. June:University of Pennsylvania: Patents & Royalties: financial interests due to intellectual property and patents in the field of cell and gene therapy. Conflicts of interest are managed in accordance with University of Pennsylvania policy and oversight; Novartis: Research Funding. Gill:Novartis: Patents & Royalties, Research Funding.


2010 ◽  
Vol 207 (12) ◽  
pp. 2719-2732 ◽  
Author(s):  
Julian Pulecio ◽  
Jelena Petrovic ◽  
Francesca Prete ◽  
Giulia Chiaruttini ◽  
Ana-Maria Lennon-Dumenil ◽  
...  

The immune synapse (IS) forms as dendritic cells (DCs) and T cells interact in lymph nodes during initiation of adaptive immunity. Factors that contribute to the formation and maintenance of IS stability and function have been mostly studied in T cells, whereas little is known about events occurring during synapse formation in DCs. Here, we show that DCs activated by Toll-like receptor (TLR) agonists reorient the microtubule-organizing center (MTOC) toward the interacting T cell during antigen-specific synapse formation through a mechanism that depends on the Rho GTPase Cdc42. IL-12, a pivotal cytokine produced by DCs, is found enriched around the MTOC at early time points after TLR ligation and is dragged to the DC–T cell interface in antigen-specific synapses. Synaptic delivery of IL-12 induces activation of pSTAT4 and IFN-γ neosynthesis in CD8+ naive T cells engaged in antigen-specific conjugates and promotes the survival of antigen-primed T cells. We propose that DC polarization increases the local concentration of proinflammatory mediators at the IS and that this represents a new mechanism by which T cell priming is controlled.


Sign in / Sign up

Export Citation Format

Share Document