Superior Cytotoxicity of Clonal Versus Polyclonal Gamma Delta T Cells against Philadelphia Chromosome Positive and B-CLL Derived Leukemic Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3032-3032
Author(s):  
Helena Dhamko ◽  
Gabrielle Melanie Siegers ◽  
Julia Schüler ◽  
Armand Keating

Abstract Abstract 3032 Poster Board II-1008 Gamma delta T cells (GDTCs), a small subset of T-lymphocytes (<10%) involved in tumor immune surveillance, are promising candidates for adoptive immunotherapy demonstrated by their ability to elicit cytolytic responses against many tumors. We have isolated and expanded GDTCs as a first step in developing a clinical protocol (Siegers, GM et al., ASH 2008). GDTCs exist in subsets whose specificity and function are determined by receptor rearrangement and tissue localization. The Vdelta2 (Vd2) subset in blood recognizes small phosphate containing non-peptide antigens and has been shown to kill myeloma and Burkitt lymphoma cells, whereas Vdelta1 (Vd1) GDTCs are typically found in tissue mucosae and provide defense against epithelial cancers. Although circulating GDTCs are predominantly of the Vdelta2 (Vd2) subset, we found that in 59% of GDTC cultures derived from the peripheral blood of healthy donors (n=17), the Vdelta1 (Vd1) subset was preferentially expanded, comprising 70.5% ± 14.7% (mean ± standard deviation) as determined by flow cytometry. In the remaining cultures, Vd2 GDTCs comprised 75.9 ± 14.2%. Preferential expansion of Vd1 did not correlate with a higher percentage of this subset in donor blood prior to GDTC isolation. In one expanded culture, Vd1 and Vd2 were equally present (40.3% and 41.3% respectively, on day 17). To determine activation status of Vd1 and Vd2 subsets simultaneously when co-incubated for 3 hours at a 1:5 effector:target ratio (E:T) with EM2eGFPluc, Ph(+) leukemic target cells, exposure of the degranulation-induced marker CD107 was determined by flow cytometry. Assays performed on culture days 10 to 17 (n=8) revealed that only 3.4 ± 2.7% Vd1 cells were activated, whereas Vd2 cells exhibited ten-fold activation with 34.1 ± 4.7% expressing CD107. To further investigate the different cytotoxic potential of these GDTC subsets, we generated 3 Vd2 clones from Donor 1 and 7 clones (3 Vd1 and 4 Vd2) from Donor 2. 3 clones were obtained from 200 Vd1-sorted cells, and 4 clones from 600 Vd2-sorted cells, suggesting superior clonogenicity of Vd1. Indeed, Vd1 clones grew faster than Vd2 from this donor. After 40 days in culture, we obtained 57 ± 37 × 106 Vd1 and 37 ± 23 × 106 Vd2 cells from a single cell on day 0. The enhanced growth of Vd1 explains how this subset predominates in most polyclonal GDTC cultures, despite donors having more Vd2 than Vd1 in their blood (Vd2:Vd1 = 5.7±3.2, n=7). Polyclonal expansion of GDTCs from Donor 2 yielded 11.2 × 106 cells on day 20, from 1.7 × 106 on day 0, a 6.7-fold expansion compared to 107-fold achieved with clones from the same donor. Vd2 clones were screened for their ability to lyse EM2eGFPluc in vitro. In a flow-cytometric assay based on propidium iodide staining, Vd2 clones exhibited cytotoxicities ranging 4.5%-10.6% for a 4-hour co-incubation at 2.6:1 E:T. Clones from Donor 1 were tested again and ranking confirmed in a 4-hour cytotoxicity assay at 10:1 E:T, with a range of 23.5%-35.4% for clones A1, B3 and C6, respectively. When C6 was compared to polyclonal GDTCs from the same donor, it was found to be more cytotoxic (9.0% versus 2.0% at 10:1 for 4 hours). Vd2 clones and polyclonal GDTC from Donor 2 were compared; clone E5 exhibited 10-fold (49.2%) and E3 1.4-fold (7.6%) cytotoxicity of polyclonal GDTCs (5.3%). Published reports describe an increase in Vd1 in B-CLL patients, hence we used MEC1, an EBV-positive B-cell line derived from B-CLL, as a target. At a 1.9:1 ratio over 4 hours, % cytotoxicity ranged 7.0% - 13.8% (D3 most cytotoxic). Vd1 clones were compared with polyclonal GDTC cultures derived from Donors 2 and 3, which exhibited 57% and 52% Vd1, respectively. Clone D3 again proved most cytotoxic at 10:1 E:T over 4 hours, with 40.8% compared to 18.6% (Donor 3) and 6.8% (Donor 2). Immunophenotyping indicates phenotypic stability in clones over time that is not evident in polyclonal populations. We conclude that the increased cytotoxicity, superior expansion potential and extended culture duration as well as phenotypic stability of GDTC clones make them a more attractive therapeutic agent than polyclonal cultures for the treatment of hematological malignancies. Our study reveals the potential importance of selecting specific and potent GDT effector cells for treating Ph(+) and B-CLL leukemias with GDTCs. We next plan to test this approach in our established pre-clinical xenogeneic leukemia mouse model. (Dhamko H was the recipient of an ASH Summer Trainee Research Award). Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5031-5031
Author(s):  
Ester Mejstrikova ◽  
Edita Kabickova ◽  
David Sumerauer ◽  
Tomas Seeman ◽  
Eva Fronkova ◽  
...  

Abstract Abstract 5031 Background Post-transplant lymphoproliferative disorders (PTLD) occur in 1-20% of recipients receiving solid organ transplantation. We describe a patient who suffered from hepatosplenic T-cell lymphoma occurring after previous PTLD in a renal transplant recipient. Patient/Methods An 11-yr-old girl underwent kidney transplantation for end-stage Fanconi's nephronophthisis in 2002. In October 2006 significant neutropenia (<200/uL) was firstly detected, without any abnormality in bone marrow (BM) aspirate and without hepato- or splenomegaly. Episodes of neutropenia resolved spontaneously or after enhanced immunosuppression and G-CSF. In January 2007 new episodes of neutropenia and newly significant “monocytosis” were detected in peripheral blood (PB) and BM. Percentage of “monocytes” corresponded with immunophenotypically atypical TCR gamma/delta positive T cells (CD7weakposCD5negCD3bright) in PB and BM. Clonal TCR gamma and delta rearrangements were identified which enabled qPCR minimal residual disease (MRD) assessment. No lymphadenopathy was present, slight hepatosplenomegaly was identified by sonography. Conventional and molecular cytogenetic analyses didn't reveal any chromosomal aberration in PB and BM including changes on chromosome 7. No increased levels of EBV and CMV load by PCR were found. Partial increase of granulocytes and slight decrease of atypical TCR gamma/delta T cells were detected after administration of corticosteroid bolus and mercaptopurin. Three months later she presented with fever, rapidly progressive hepatosplenomegaly and pancytopenia, clinically corresponding with hepatosplenic lymphoma. At this time, newly acquired isochromosome 7q was detected by FISH. Results Initial therapy with campath and fludarabine was ineffective. She didn't respond to the 2nd line treatment (prednisone, vincristine, daunorubicine,asparaginase) and died 2 weeks later from lymphoma progression. Autopsy identified severe hemophagocytosis in the liver. Retrospectively, we identified identical clonal TCR rearrangements in the PB samples from March 2006 (∼0.03% of lymphoma PB MRD level), when neither changes in PB count nor clinical symptoms were found. Conclusion We detected a “pre-lymphoma” phase with clonal expansion of atypical TCR gamma/delta T cells more than 1 year before lymphoma manifestation. The presence of isochromosome 7q was a late change during this lymphoma genesis. Grant support IGA NS/9997-4; IGA NR/9531-3, IGA NS 10480-3, Research Projects MZCR 000064203, MSM0021620813 Disclosures No relevant conflicts of interest to declare.


1990 ◽  
Vol 172 (6) ◽  
pp. 1877-1880 ◽  
Author(s):  
M Nakata ◽  
M J Smyth ◽  
Y Norihisa ◽  
A Kawasaki ◽  
Y Shinkai ◽  
...  

The cytotoxic activity and pore-forming protein (PFP) expression of human peripheral blood (PB) gamma/delta T cells were examined. Fresh gamma/delta T cells isolated from PB lymphocytes by fluorescence-activated cell sorting exhibited a substantial natural killer-like cytotoxic activity against K562 target cells and had a high cytotoxic potential triggered by anti-CD3 monoclonal antibody (mAb) against P815 target cells bearing Fc gamma R. Immunocytochemical staining with an anti-PFP mAb revealed that virtually all PB gamma/delta T cells are granular lymphocytes with abundant PFP in their cytoplasmic granules. Constitutive expression of PFP in PB gamma/delta T cells was also demonstrated by Northern blot analysis. These observations support the proposed role of gamma/delta T cells in cytolytic immune surveillance in vivo.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2564
Author(s):  
Dieter Kabelitz

Gamma delta (γδ) T cells are a small subset of CD3-positive T cells in the peripheral blood but occur at increased frequency in mucosal tissues [...]


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3290-3290
Author(s):  
Sean R. Stowell ◽  
Justine Liepkalns ◽  
Jeanne E. Hendrickson ◽  
Kathryn Pierce ◽  
Nicole H. Smith ◽  
...  

Abstract Abstract 3290 Background: Although mechanisms exist whereby T cells differentiate self from non-self, occasionally tolerance breaks down and T cells target self-antigens. Under these circumstances, healthy cells possess unique receptors that serve to inhibit potential cell-mediated destruction. However, unlike cell-mediated tissue injury, antibody-secreting cells elicit their effects at remote sites, precluding direct feedback from target tissue to secreting cells. As a result, target cells appear to have evolved mechanisms of inhibiting antibody-mediated destruction. Indeed, patients with reduced levels of complement inhibitory factors experience severe hemolysis following antibody engagement. However, regulatory components responsible for protection against complement-independent antibody effecter functions remain poorly understood. RBCs provide a unique tool in the examination of cellular fate following antibody engagement as RBCs fail to synthesize new antigen and also fail to proliferate. As a result, we utilized a model of antibody-RBC binding to determine whether RBCs possess complement-independent mechanisms of cellular resistance to antibody-induced hemolysis. Methods: B6, C3 KO or FcγR KO mice were passively immunized with an anti-Fy3 IgG2a monoclonal antibody. Fluorescent dye labeled RBCs that transgenically express a chimeric antigen including the Fy3 epitope from human Duffy (HOD mice) were then transfused into immunized or nonimmunized control mice. Over a timecourse, peripheral blood was obtained and transfused RBCs were visualized by flow cytometry, followed by examination of clearance, surface C3, bound IgG and Fy3 antigen. To discriminate old from new RBCs following transfusion, RBCs were harvested from mice 35 days post-biotinylation, transfused into immunized or nonimmunized mice and examined for differential clearance by strepavidin staining and flow cytometry. To further evaluate RBC resistance to antibody-induced clearance, HOD RBCs were harvested 2 days following transfusion and re-transfused into immunized or nonimmunized mice followed by examination for clearance, surface C3, bound IgG and Fy3 antigen. Results: Immunized mice rapidly cleared over half of HOD RBCs within 2 hours; however, a significant number of resistant cells remained in circulation despite the persistence of antibody levels capable of clearing additional RBCs following subsequent transfusion. No clearance was observed in FcγR KO mice but normal clearance and resistance was observed in C3 KO mice. Moreover, no complement degradation products were detected following transfusion into wt mice. RBCs 35 days and older displayed comparable antibody-induced clearance as younger RBCs, suggesting that resistance did not reflect preferential loss of older RBCs. Furthermore, HOD RBCs remained resistant to clearance following re-transfusion into recently immunized recipients. Examination of HOD antigen levels demonstrated a rapid decrease in HOD antigen that correlated with the development of resistance. Similar to clearance, HOD antigen levels decreased in C3 KO but not FcγR KO. Conclusion: These results suggest that in addition to known complement-dependent mechanisms of cellular resistance to antibody-induced hemolysis, a novel pathway exists whereby Fcγ receptors not only participate in clearance, but also appear to facilitate specific loss of antibody reactive antigen, which may be responsible for a population of RBCs resistant to further clearance. Taken together, these results indicate that RBCs possess multiple mechanisms for cellular protection against antibodies that may be relevant in autoimmune hemolytic anemia and other antibody-mediated processes. Disclosures: No relevant conflicts of interest to declare.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
CA Wenner ◽  
C Inatsuka ◽  
T Davis Smith ◽  
M Sasagawa ◽  
MR Martzen ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A635-A635
Author(s):  
Jeffrey Zhang ◽  
Everett Henry ◽  
L Harris Zhang ◽  
Wanying Zhang

BackgroundResveratrol (3,4’,5-trihydroxystilbene), a stilbenoid isolated from many species of plants, is widely known for its antioxidative, anti-inflammatory, immunomodulatory and anticancer activities. Recently, novel resveratrol oligomers have been isolated from various plants; their diverse structures are characterized by the polymerization of two or more resveratrol units. Little is known regarding the anticancer and immunomodulating activities of these oligomers. In this study, we designed in vitro models to compare resveratrol side by side with its natural dimer NBT-167 for their anticancer and immunological activities.MethodsWe isolated resveratrol and its dimer (NBT-167) from plants. The potency of the compounds was compared side by side using cancer cell survival assays and immunological assays with various types of human cells including cancer cell lines, PBMCs and enriched NK, gamma delta T cells, THP-1 monocytic cells, HL-60 promyelocytic leukemia cells as well as mouse RAW264.7 macrophages.ResultsNBT-167 was found to be more potent than resveratrol in inhibiting growth of various cancer cells and modulation of cytokine production from anti-IgM, LPS, PHA or SEB stimulated PBMC. Both compounds similarly enhanced IL-2 stimulated NK and gamma delta T cell killing activity against K562 cells and modulated nitric oxide production from LPS/IFN-g induced RAW264.7 macrophages and phagocytotic activity of HL-60 cells. NBT-167 was slightly more potently than resveratrol in inhibiting chemotaxis of HL-60 cells and blocking cell cycle of THP-1 and HL-60 cells at G1/S transition. In addition, NBT-167, but not resveratrol, could increase IL-2 production and T cell proliferation stimulated with anti-CD3 and anti-CD28 and synergize with anti-PD-1 antibody to increase IL-2 and IFN-gamma production in co-culture of allotypic T cells and dendric cells (MLR).ConclusionsOur data showed that NBT-167, a dimer of resveratrol, had anticancer and immunomodulatory activities such as modulation of expression of cytokines in immune cells and induction of cancer cell-killing activities of NK and gamma delta T cells. Generally, NBT-167 appeared to have higher activities than resveratrol in modulating immune cells and inhibiting cancer cells. NBT-167 could be a promising cancer immunotherapeutic agent targeting both cancer cells and immune cells.


1994 ◽  
Vol 179 (1) ◽  
pp. 311-315 ◽  
Author(s):  
M K Perera ◽  
R Carter ◽  
R Goonewardene ◽  
K N Mendis

The percentage of peripheral blood mononuclear cells (PBMC) bearing the CD3+ phenotype and the alpha/beta and gamma/delta T cell receptors (TCR) in PBMC were examined in Plasmodium vivax malaria patients and convalescents. The cells were labeled with monoclonal antibodies, stained with either fluorescence or phycoerythrin, and examined by ultraviolet (UV) microscopy. A highly significant increase in both the proportion and the absolute numbers of gamma/delta T cells (p &lt; 0.005 and &lt; 0.001, respectively, Student's t test) was observed in nonimmune P. vivax patients during clinical paroxysms compared to nonmalarial controls. These T cells, which normally constitute not more than 3-5% of PBMC, constituted &lt; or = to 30% of PBMC during paroxysms in these nonimmune patients in whom the clinical symptoms were severe. A less significant increase of gamma/delta T cells were also observed in these nonimmune patients during infection, between paroxysms and during convalescence. In contrast, in an age-matched group of semi-immune patients resident in a malaria-endemic region of the country, in whom the clinical disease was comparatively mild, there was no increase in gamma/delta T cells either during infection, even during paroxysms, or convalescence. The severity of disease symptoms in patients as measured by a clinical score correlated positively with the proportion of gamma/delta T cells in peripheral blood (r = 0.53, p &lt; 0.01), the most significant correlation being found between the prevalence and severity of gastrointestinal symptoms, nausea, anorexia, and vomiting, and the proportion of gamma/delta T cells (r = 0.49, p = 0.002). These findings suggest that gamma/delta T cells have a role to play in the pathogenesis of malaria, possibly in the general constitutional disturbances and particularly in gastrointestinal pathology in malaria.


Sign in / Sign up

Export Citation Format

Share Document