Pre-mRNA Splicing Mechanisms, Misregulation in Disease, and Therapeutic Strategies

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-13-SCI-13
Author(s):  
Adrian Krainer

Abstract Abstract SCI-13 Most eukaryotic protein-coding genes have one or more introns, and their transcripts can undergo alternative splicing, giving rise to multiple isoforms. Accurate splicing is essential for normal gene expression, and alternative splicing is a key mechanism for expanding the proteome and regulating the expression of diverse protein isoforms. This session will review the general mechanisms of pre-mRNA splicing and the regulation of alternative splicing. In addition, the process of how abnormal splicing arises as a result of intronic or exonic mutations in particular genes, or more globally as a result of splicing-factor misregulation, as well as the contribution of splicing misregulation to cancer, will be described. Lastly the current status of targeted therapeutics development, focusing on antisense approaches to correct abnormal splicing of specific genes or to modulate alternative splicing, will be discussed. Disclosures: Krainer: ISIS Pharmaceuticals: Consultancy, Patents & Royalties, Research Funding.

2018 ◽  
Author(s):  
Chrissie Lim

Immune responses require the tight control of dose, location, strength and duration through genetic, epigenetic or biochemical regulation. Of these, the generation of alternatively-spliced constructs increases transcriptional and proteomic diversity in post-transcriptional modification, localization and functional domain integrity. Specifically, this thesis explores how splice variation engenders profound differences in the biological functions of interleukin-22 (IL-22) binding protein (IL-22BP) and interferon lambda 4 (IFNλ4), which are both central components of distinct cytokine pathways in mucosal immunity and inflammation. IL-22BP is a soluble receptor for IL-22 that is expressed as three isoforms in humans, though the physiological relevance of the three human isoforms has remained a mystery due to the absence of this variation in mice. We present novel findings that IL-22BPi1 is inactive due to intracellular retention by its unique exon, while IL-22BPi3 is also an antagonist but with differential activity from IL-22BPi2. Importantly, while IL-22BPi3 has widespread expression in steady-state homeostatic conditions, IL-22BPi2 is the only isoform induced by inflammatory TLR2/retinoic acid stimulation, highlighting important spatiotemporal control of the two isoforms that exploit their differential activities. IFNλ4 presents a different mystery in which the protein-coding variant is genetically associated with poorer clearance, but the mechanism for this association remains unclear. We investigated several non-canonical functions proposed by the field, including intrinsic differences in activity of the three protein isoforms and their interference with antiviral activites of other type I or III interferons. Establishing an overexpression system and purifying recombinant proteins, we found that only the full-length isoform is active and exhibits similar effects to canonical type III IFN IFNλ3, without any blockade of other IFN signaling. Simultaneously, functional IFNλ4 expression is suppressed in hepatocytes and dendritic cells through preferential splicing to increase intron retention and expression of inactive isoforms. Therefore, alternative splicing in IFNλ4 is an important mechanism to control IFNλ4 bioactivity. The divergent manners in which alternative splice forms impact the activity of both IL-22BP and IFNλ4 highlight the important contributions of this process to cytokine biology and bigger implications that escape detection by genomic analyses.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2705-2705 ◽  
Author(s):  
Lara Rizzotto ◽  
Arianna Bottoni ◽  
Tzung-Huei Lai ◽  
Chaomei Liu ◽  
Pearlly S Yan ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) follows a variable clinical course mostly dependent upon genomic factors, with a subset of patients having low risk disease and others displaying rapid progression associated with clonal evolution. Epigenetic mechanisms such as DNA promoter hypermethylation were shown to have a role in CLL evolution where the acquisition of increasingly heterogeneous DNA methylation patters occurred in conjunction with clonal evolution of genetic aberrations and was associated with disease progression. However the role of epigenetic mechanisms regulated by the histone deacetylase group of transcriptional repressors in the progression of CLL has not been well characterized. The histone deacetylases (HDACs) 1 and 2 are recruited onto gene promoters and form a complex with the histone demethylase KDM1. Once recruited, the complex mediate the removal of acetyl groups from specific lysines on histones (H3K9 and H3K14) thus triggering the demethylation of lysine 4 (H3K4me3) and the silencing of gene expression. CLL is characterized by the dysregulation of numerous coding and non coding genes, many of which have key roles in regulating the survival or progression of CLL. For instance, our group showed that the levels of HDAC1 were elevated in high risk as compared to low risk CLL or normal lymphocytes and this over-expression was responsible for the silencing of miR-106b, mR-15, miR-16, and miR-29b which affected CLL survival by modulating the expression of key anti-apoptotic proteins Bcl-2 and Mcl-1. To characterize the HDAC-repressed gene signature in high risk CLL, we conducted chromatin immunoprecipitation (ChIP) of the nuclear lysates from 3 high risk and 3 low risk CLL patients using antibodies against HDAC1, HDAC2 and KDM1 or non-specific IgG, sequenced and aligned the eluted DNA to a reference genome and determined the binding of HDAC1, HDAC2 and KDM1 at the promoters for all protein coding and microRNA genes. Preliminary results from this ChIP-seq showed a strong recruitment of HDAC1, HDAC2 and KDM1 to the promoters of several microRNA as well as protein coding genes in high risk CLL. To further corroborate these data we performed ChIP-Seq in the same 6 CLL samples to analyze the levels of H3K4me2 and H3K4me3 around gene promoters before and after 6h exposure to the HDACi panobinostat. Our goal was to demonstrate that HDAC inhibition elicited an increase in the levels of acetylation on histones and triggered the accrual of H3K4me2 at the repressed promoter, events likely to facilitate the recruitment of RNA polymerase II to this promoter. Initial analysis confirmed a robust accumulation of H3K4me2 and H3K4me3 marks at the gene promoters of representative genes that recruited HDAC1 and its co-repressors in the previous ChIP-Seq analysis in high risk CLL patients. Finally, 5 aggressive CLL samples were treated with the HDACi abexinostat for 48h and RNA before and after treatment was subjected to RNA-seq for small and large RNA to confirm that the regions of chromatin uncoiled by HDACi treatment were actively transcribed. HDAC inhibition induced the expression of a large number of miRNA genes as well as key protein coding genes, such as miR-29b, miR-210, miR-182, miR-183, miR-95, miR-940, FOXO3, EBF1 and BCL2L11. Of note, some of the predicted or validated targets of the induced miRNAs were key facilitators in the progression of CLL, such as BTK, SYK, MCL-1, BCL-2, TCL1, and ROR1. Moreover, RNA-seq showed that the expression of these protein coding genes was reduced by 2-33 folds upon HDAC inhibition. We plan to extend the RNA-seq to 5 CLL samples with indolent disease and combine all the data to identify a common signature of protein coding and miRNA genes that recruited the HDAC1 complex, accumulated activating histone modifications upon treatment with HDACi and altered gene and miRNA expression after HDAC inhibition in high risk CLL versus low risk CLL. The signature will be than validated on a large cohort of indolent and aggressive CLL patients. Our final goal is to define a signature of coding and non coding genes silenced by HDACs in high risk CLL and its role in facilitating disease progression. Disclosures Woyach: Acerta: Research Funding; Karyopharm: Research Funding; Morphosys: Research Funding.


Author(s):  
Aysha Divan ◽  
Janice A. Royds

Biological functions require protein and the protein makeup of a cell determines its behaviour and identity. Proteins, therefore, are the most abundant molecules in the body except for water. The approximately 20,000 protein coding genes in the human genome can, by alternative splicing, multiple translation starts, and post-translational modifications, produce over 1,000,000 different proteins, collectively called ‘the proteome’. It is the size of the proteome and not the genome that defines the complexity of an organism. ‘Proteins’ describes the composition and structure of proteins and how they are studied. What information is required in order to understand how proteins work and what happens when this function is impaired in disease?


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 531-531
Author(s):  
Sherry Gee ◽  
Jonathan Villalobos ◽  
Miki Yamamoto ◽  
Tyson A. Clark ◽  
Jeong-Ah Kang ◽  
...  

Abstract Spatial and temporal regulation of alternative pre-mRNA splicing determines which exons are incorporated into mature mRNA, modulating mRNA coding capacity to ensure synthesis of appropriate protein isoforms throughout normal differentiation and development. During erythropoiesis, a stage-specific switch in pre-mRNA splicing activates incorporation of protein 4.1R exon 16, thereby increasing 4.1R affinity for spectrin and actin and mechanically strengthening red blood cell membranes. We are exploring the hypothesis that stage-specific changes in pre-mRNA splicing regulate expression of other critical genes during terminal erythropoiesis. Last year we described exon microarray and RT-PCR studies that revealed several novel pre-mRNA splicing switches in terminally differentiating human erythroid progenitors. These alternative splicing events involved well-annotated exons with consensus exon-intron boundaries, supporting a model in which these events represent a regulated alternative splicing program rather than a breakdown of splicing integrity in late erythropoiesis. Here we report additional evidence for this model by showing that several erythroid stage-specific switches in alternative pre-mRNA splicing are conserved between human and mouse. Primary mouse splenic erythroblasts from FVA-infected mice were cultured in vitro under differentiation conditions and used as the source of RNA for analysis of murine erythroid splicing events. From a total of seven internal cassette exons whose splicing was activated in late human erythroblasts, five exhibited an analogous splicing switch in murine erythroblasts. Comparative genomic analysis showed that these alternative exons are embedded in regions of unusually high sequence conservation among vertebrate species, suggesting that important regulatory signals are contained within the adjacent introns. Indeed, the flanking introns for several of these exons contain binding motifs for Fox2, an RNA binding protein and known splicing regulator for many tissue-specific splicing events. Further analysis of the conserved erythroid splicing events revealed the following: three splicing switches occur in transcripts encoding RNA binding proteins (MBNL2, HNRPLL, and SNRP70), suggesting significant changes in the RNA processing machinery of late erythroblasts; and three of these alternative exons encode premature stop codons that could induce nonsense mediated decay (NMD) and contribute to down-regulation of these genes during terminal erythropoiesis. Consistent with the latter hypothesis, inhibition of NMD in murine erythroblast cultures led to increased accumulation of mRNA isoforms containing the premature stop codons. Together these results suggest the existence of a highly regulated alternative splicing program that is critical for late erythroid differentiation.


2007 ◽  
Vol 283 (3) ◽  
pp. 1217-1221 ◽  
Author(s):  
Amy E. House ◽  
Kristen W. Lynch

Alternative pre-mRNA splicing, the differential inclusion or exclusion of portions of a nascent transcript into the final protein-coding mRNA, is widely recognized to be a ubiquitous mechanism for controlling protein expression. Thus, understanding the molecular basis of alternative splicing is essential for deciphering post-transcriptional control of the genome. Pre-mRNA splicing in general is catalyzed by a large dynamic macromolecular machine known as the spliceosome. Notably, the recognition of the intron substrate by spliceosomal components and the assembly of these components to form a catalytic spliceosome occur through a network of highly combinatorial molecular interactions. Many, if not all, of these interactions are subject to regulation, forming the basis of alternative splicing. This minireview focuses on recent advances in our understanding of the diversity of mechanisms by which the spliceosome can be regulated so as to achieve precise control of alternative splicing under a range of cellular conditions.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Noam Shomron ◽  
Carmit Levy

MicroRNAs (miRNAs) are often hosted in introns of protein-coding genes. Given that the same transcriptional unit can potentially give rise to both miRNA and mRNA transcripts raises the intriguing question of the level of interaction between these processes. Recent studies from transcription, pre-mRNA splicing, and miRNA-processing perspectives have investigated these relationships and yielded interesting, yet somewhat controversial findings. Here we discuss major studies in the field.


BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 159 ◽  
Author(s):  
Stefanie Schindler ◽  
Karol Szafranski ◽  
Michael Hiller ◽  
Gul Ali ◽  
Saiprasad G Palusa ◽  
...  

Open Biology ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 170073 ◽  
Author(s):  
Joana Guiro ◽  
Shona Murphy

In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 500-500
Author(s):  
Michelle Ng ◽  
Lonneke Verboon ◽  
Hasan Issa ◽  
Raj Bhayadia ◽  
Oriol Alejo ◽  
...  

Abstract The noncoding genome presents a largely untapped source of biological insights, including tens of thousands of long noncoding RNA (lncRNA) loci. While some produce bona fide lncRNAs, others exert transcript-independent cis-regulatory effects, and the lack of predictive features renders their mechanistic dissection highly challenging. Here, we describe CTCF-enriched lncRNA loci (C-LNC) as a putative new subclass of functional genetic elements exemplified by MYNRL15 - myeloid leukemia noncoding regulatory locus on chromosome 15. Initially identified by an expression-guided CRISPRi screen of hematopoietic stem and progenitor (HSPC) / acute myeloid leukemia (AML) lncRNA signatures (480 genes, 1545 sgRNAs), we found MYNRL15 dependency in myeloid leukemia cells of diverse genetic backgrounds. Interestingly, cis and trans perturbation approaches revealed both the MYNRL15 transcript and its flanking protein-coding genes to be dispensable. High density CRISPR tiling of a 15 kb area centered on MYNRL15 (1613 sgRNAs) instead uncovered two crucial, candidate cis-regulatory DNA elements in the locus, which drive the MYNRL15 perturbation phenotype. To determine the molecular basis of MYNRL15 dependence, we performed transcriptome, chromatin conformation, chromatin accessibility, and CTCF profiling. RNA-sequencing established MYNRL15's involvement in maintaining key cancer dependency pathways (e.g. cell cycle, ribosome, spliceosome). Further, MYNRL15 perturbation associated with the coordinated dysregulation of several chromosome 15 neighbourhoods, and formation of a long-range chromatin interaction between the locus and the base of a distal loop, as detected via next-generation Capture-C. The gained interaction was accompanied by diffuse gains in chromatin accessibility across the distal interaction sites (ATAC-seq) as well as reduced CTCF occupancy at the MYRNL15 locus (CTCF CUT&RUN), altogether indicating the 3D re-organization of chromosome 15 following MYNRL15 perturbation. Integrative analysis of the chromatin conformation and transcriptome data, combined with a small CRISPR-Cas9 knockout screen of protein-coding genes from the gained interaction region (29 genes, 149 sgRNAs), pinpointed two potent cancer dependency genes that are located in the region and downregulated following MYNRL15 perturbation: namely, WDR61 and IMP3. Individual knockout of both genes robustly depleted myeloid leukemia cells, recapitulating the MYNRL15 perturbation phenotype and positioning WDR61 and IMP3 as its regulatory targets. Importantly, in primary cells, MYNRL15 perturbation eradicated AML blasts while sparing 50-60% of CD34 + HSPCs in vitro, and reduced patient-derived AML xenografts up to 10-fold in vivo, indicating a potential therapeutic window. Having implicated MYNRL15 in 3D genome organization and demonstrated its role in myeloid leukemia cells, we explored whether MYNRL15 may belong to a sub-category of biologically relevant lncRNA loci that have thus far been overlooked due to their lack of transcript-specific functions. Remarkably, elevated CTCF density (e.g. number of CTCF binding sites per kb of gene length) distinguishes MYNRL15 and 531 other lncRNA loci in K562 cells, of which 43-54% associate with genetic subgroups and/or survival in AML patient cohorts, and 18.4% are functionally required for leukemia maintenance as determined by CRISPR-Cas9 screening. The latter hit identification rate represents a substantial improvement over typical lncRNA essentiality screens (which range from 2-6%) - illustrating the effectiveness of CTCF density metrics in refining functional lncRNA candidate lists, and underlining the relevance such loci hold for AML and cancer pathophysiology in general. Curated C-LNC catalogs in other cell types will facilitate the search for noncoding oncogenic vulnerabilities in AML and other malignancies. Figure 1 Figure 1. Disclosures Reinhardt: Celgene Corporation: Consultancy; Novartis: Consultancy; Bluebird Bio: Consultancy; Janssen: Consultancy; CLS Behring: Research Funding; Roche: Research Funding. Klusmann: Bluebird Bio: Consultancy; Novartis: Consultancy; Roche: Consultancy; Jazz Pharmaceuticals: Consultancy.


2008 ◽  
Vol 36 (3) ◽  
pp. 483-490 ◽  
Author(s):  
Chiranthani Sumanasekera ◽  
David S. Watt ◽  
Stefan Stamm

Alternative pre-mRNA splicing is an important element in eukaryotic gene expression, as most of the protein-coding genes use this process to generate multiple protein isoforms from a single gene. An increasing number of human diseases are now recognized to be caused by the selection of ‘wrong’ alternative exons. Research during the last few years identified a number of low–molecular-mass chemical substances that can change alternative exon usage. Most of these substances act by either blocking histone deacetylases or by interfering with the phosphorylation of splicing factors. How the remaining large number of these substances affect splicing is not yet fully understood. The emergence of these low-molecular-mass substances provides not only probes for studying alternative pre-mRNA splicing, but also opens the door to the possible harnessing of these compounds as drugs to control diseases caused by the selection of ‘wrong’ splice sites.


Sign in / Sign up

Export Citation Format

Share Document