Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1517-1526 ◽  
Author(s):  
John M. Timmerman ◽  
Debra K. Czerwinski ◽  
Thomas A. Davis ◽  
Frank J. Hsu ◽  
Claudia Benike ◽  
...  

Tumor-specific clonal immunoglobulin expressed by B-cell lymphomas (idiotype [Id]) can serve as a target for active immunotherapy. We have previously described the vaccination of 4 patients with follicular lymphoma using dendritic cells (DCs) pulsed with tumor-derived Id protein and now report on 35 patients treated using this approach. Among 10 initial patients with measurable lymphoma, 8 mounted T-cell proliferative anti-Id responses, and 4 had clinical responses—2 complete responses (CRs) (progression-free [PF] for 44 and 57 months after vaccination), 1 partial response (PR) (PF for 12 months), and 1 molecular response (PF for 75+ months). Subsequently, 25 additional patients were vaccinated after first chemotherapy, and 15 of 23 (65%) who completed the vaccination schedule mounted T-cell or humoral anti-Id responses. Induction of high-titer immunoglobulin G anti-Id antibodies required coupling of Id to the immunogenic carrier protein keyhole limpet hemocyanin (Id-KLH). These antibodies could bind to and induce tyrosine phosphorylation in autologous tumor cells. Among 18 patients with residual tumor at the time of vaccination, 4 (22%) had tumor regression, and 16 of 23 patients (70%) remain without tumor progression at a median of 43 months after chemotherapy. Six patients with disease progression after primary DC vaccination received booster injections of Id-KLH protein, and tumor regression was observed in 3 of them (2 CRs and 1 PR). We conclude that Id-pulsed DC vaccination can induce T-cell and humoral anti-Id immune responses and durable tumor regression. Subsequent boosting with Id-KLH can lead to tumor regression despite apparent resistance to the primary DC vaccine.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1409-1409 ◽  
Author(s):  
Cristina M. Bertinetti ◽  
Hendrik Veelken

Abstract Induction of tumor-specific immune responses by idiotype vaccination is a promising strategy for biological therapy of indolent B cell lymphomas. In a previous report, we have described immune responses in a subset of patients participating in a phase I clinical trial primarily designed to demonstrate safety and efficacy of a recombinant idiotype vaccine (Veelken et al., ASH abstract #3342, 2003). In this trial, B-NHL patients who had relapsed after standard chemotherapy received repetitive intradermal vaccinations with recombinant idiotype Fab fragment derived from their tumor mixed with lipid-based adjuvant and concurrent subcutaneous GM-CSF at the same site. We now present the final analysis of cellular immune responses in this cohort. Peripheral blood lymphocytes (PBL) were obtained prior to and on various time points during and after vaccinations. Cryopreserved PBL were stimulated twice by autologous dendritic cells (DC) exposed to the autologous Fab protein for cross-presentation as MHC class I-bound peptides. INFγ-secreting cells were subsequently quantified by ELISPOT with Fab-presenting DC. Alternatively, freshly thawed PBL were directly assayed with recombinant Fab by ELISPOT without prestimulation. An increase in the frequency of Fab-responding PBL was detected in 7 of 15 evaluable patients with the prestimulation assay and in 4 of 10 patients by direct quantitation, resulting in a combined cellular response rate of 53% (9 of 17). A cellular immune response showed a trend for correlation with extended progression-free survival (p=0.08). T cell responses were predominantly idiotype-specific since lesser or no increases in IFNγ-secreting cells were detected against light chain- and VH family-matched control Fabs. Interestingly, a much higher base-line reactivity was observed against the control Fabs in comparison to the patient’s lymphoma Fab in four patients, pointing to the possibility of tumor-specific anergy in lymphoma patients that can at least be partially corrected by active immunization. In an effort to identify the MHC class I-presented idiotype-derived peptides, potential binding motifs were defined by reverse immunology with the SYFPEITHI algorithm (www.syfpeithi.de). Ten candidate peptides from the variable and constant region of an immune responder’s idiotype heavy chain were synthesized and evaluated with post-vaccination PBL by ELISPOT without prestimulation. A peptide derived from the CDR2 region showed a significantly higher response compared to an unrelated peptide control (p=0.0013). Additional peptides derived from the FWR1, CDR1, and CDR2 also showed a significant stimulation, but only in comparison to a no peptide control. ELISPOT offers a valuable tool to monitor cellular immune reponses and demonstrates successful induction of tumor immunity in pretreated, tumor bearing and immunosuppressed B cell lymphoma patients. Supported by Deutsche Krebshilfe


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1391-1391 ◽  
Author(s):  
Cristina Bertolo ◽  
Raquel Malumbres ◽  
Ainara Sagardoy ◽  
Eloy F Robles ◽  
Jose I Martinez-Ferrandis ◽  
...  

Abstract Abstract 1391 LITAF was discovered as a p53-induced transcript that promoted TNFa secretion in monocytes in response to LPS. We previously reported that LITAF is inactivated by deletion or promoter hypermethylation in germinal center-derived B-cell lymphomas. However, the function of LITAF in B lymphocytes is unknown. Using gene expression analysis of isolated B-cell subpopulation and immunohistochemical studies of tonsil lymphoid follicles we found that LITAF is expressed in naïve B lymphocytes and is repressed within the germinal centers (GCs). Thus, LITAF showed an opposite expression to BCL6, an essential regulator of GC development and function. Likewise, expression of LITAF and BCL6 were inversely correlated in cell lines and biopsies from patients with B-cell lymphoma, further suggesting a link between LITAF and BCL6. ChIP-on-chip and ChIP-sequencing analyses of B cells coupled with luciferase reporter assays revealed that BCL6 repressed LITAF expression by binding to its promoter. Accordingly, BCL6 silencing with siRNAs or after exposure to a BCL6-inhibitor peptide increased LITAF expression, indicating that LITAF is transcriptionally repressed by BCL6 in GC B lymphocytes and in B-cell lymphoma cells. To initially elucidate the function of LITAF in B cells, gain-and-loss of function experiments were performed in different cellular models. LITAF expression was not related to TNFa secretion after LPS exposure, nor modulated cell proliferation or apoptosis in B cells. However, sustained expression of LITAF in B-cell lymphoma cells increased cell size, lysosome content and mitochondrial mass. Gene expression microarray studies defined a LITAF-related transcriptional signature containing genes involved in the regulation of endomembranes, vesicle trafficking and protein transport. Accordingly, immunofluorescence analysis co-localized LITAF with lysosomes and with autophagosomes expressing LC3, the mammalian homolog of yeast autophagy-related protein (Atg8), as well as with the lysosomal sorting-associated proteins NEDD4 and TSG101, both in normal CD19+ B lymphocytes and in B-cell lymphoma cells. In addition, LITAF expression induced autophagic activity in B cells, shown by an increase in the FL1/FL3 ratio after acridine orange staining and by converting LC3-I to LC3-II, which were more evident upon cell starvation. Together, these data suggest that LITAF may play a role in the processing of proteins in autophagosomes through regulating autophagy. To investigate LITAF function in vivo, we generated mice with targeted deletion of the Litaf gene in B lymphocytes by using the Cre-loxP system. Litaf -mb1-Cre (Litaf−/− ) mice developed healthy and showed normal distribution of hematopoietic cell subpopulations. However, Litaf−/− mice were unable to develop full T-cell dependent immune responses, presenting PNA-stained, Litaf-negative GCs that were absent or had marked reduction in size and number. Accordingly, reduced amounts of IgM, IgG1 and IgG3 antibodies as a consequence of abnormal class switch recombination (CSR) were detected in immunized mice. However, in experiments testing CSR in vitro, in which B cells are artificially activated in the absence of T cells, the amounts of IgM/IgG1/IgG3 did not differ between knock-out and control groups. Similarly, mouse immunization with a T-cell independent antigen did not induce differences in immunoglobulin production. Further studies of GCs in T-cell immunized Litaf−/− mice using an antibody for the Class II-associated invariant chain peptide (CLIP) revealed that the atrophic GCs in Litaf−/− mice showed strong CLIP expression in comparison to wild-type littermates. In normal immune responses, CLIP peptides bind to MHC class II molecules in endolysosomes, until they are displaced by the antigen, then releasing CLIP and allowing MHC II-antigen complexes to be transported to the cell membrane for T-cell presentation. The failure to develop appropriate immune responses together with the accumulation of CLIP peptides in Litaf -deficient mice indicate that Litaf is essential for adequate T-cell dependent immune responses in GC B lymphocytes, possibly through facilitating the presentation of the antigens to MHC II molecules in the endolysosomes. Once this process is assembled and the T-cell activated B lymphocytes enter the GCs, BCL6 represses LITAF to prevent additional interactions between B and T cells during BCR editing. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 7537-7537 ◽  
Author(s):  
Christopher Flowers ◽  
Iris Isufi ◽  
Alex Francisco Herrera ◽  
Craig Okada ◽  
Elizabeth H. Cull ◽  
...  

7537 Background: Follicular lymphoma (FL) is an incurable malignancy with patients (pts) ultimately relapsing following standard therapies. Active immunotherapy has the potential to induce life-long host anti-tumor immunity and disease control. G100 consists of glucopyranosyl lipid-A (GLA), a TLR-4 agonist in a specific formulation. Preclinically, G100 activates dendritic cells, T cells and NK cells, and triggers systemic anti-tumor immunity. In Merkel Cell carcinoma pts, G100 administered intratumorally (IT) induced tumor inflammation and responses including a CR after G100 alone. This is the first study of G100 IT in pts with NHL. Methods: Previously treated or naïve pts with FL with an injectable tumor site and distal sites of disease were eligible. In Part 1, G100 cohorts of 5 or 10µg were enrolled in a 3+3 design, followed by a large tumor ( > 4cm) cohort at 20µg. Pts received 6-9 doses of G100 IT ~qwk after radiation (RT, 2 Gy x2 doses) to the lesion. A 2nd course of G100 could be given without RT to an additional site. Results: As of 31Dec16, all 9 pts in Part 1 dose escalation (3 pts each at 5, 10, or 20 µg/dose) were evaluable for safety and efficacy. An additional 13 pts at 10µg/dose were included in the safety analysis only. No G100-related DLTs or SAEs were observed at any dose level. Of 22 safety pts, all G100 related AEs were grade 1/2 and none occurred in > 2 pts. Tumor biopsies following G100 demonstrated diffuse infiltration of CD8+ T cells in 5/5 pts and T cell repertoire analyses indicated an increased frequency of clonal tumor infiltrating lymphocytes (TILs). Best responses include: 4 PRs (45%), 3 SDs (33%) and 2 pending (22%). Of the 4 PR pts, tumor regression ranged 58-89% including up to 56% shrinkage of abscopal (distal) sites. Conclusions: G100 IT was safe, well-tolerated, induced CD8+ T cell infiltration and expansion of TIL clones. G100/RT treated and abscopal lesion regressions were observed signifying the induction or boosting of systemic anti-tumor immunity. The induction of immune responses, favorable safety profile and clinical activity indicate that G100 IT is an active agent that warrants further investigation. Part 2 enrollment continues with randomization to G100/RT ± pembrolizumab. Clinical trial information: NCT02501473.


2020 ◽  
Vol 2 ◽  
pp. 100041
Author(s):  
Olutayo A. Sogunro ◽  
Rachael Steinhauer ◽  
Eugene Lewis

2021 ◽  
pp. 104063872110110
Author(s):  
Alessandro Ferrari ◽  
Marzia Cozzi ◽  
Luca Aresu ◽  
Valeria Martini

An 8-y-old spayed female Beagle dog was presented with peripheral lymphadenomegaly. Lymph node cytology and flow cytometry led to the diagnosis of large B-cell lymphoma (LBCL). We detected minimal percentages of LBCL cells in peripheral blood and bone marrow samples. However, a monomorphic population of neoplastic cells different from those found in the lymph node was found in the bone marrow. T-cell acute lymphoblastic leukemia was suspected based on flow cytometric immunophenotyping. PCR for antigen receptor rearrangement (PARR) revealed clonal rearrangement of both B-cell and T-cell receptors, and the presence of both neoplastic clones in the lymph node, peripheral blood, and bone marrow. The dog was treated with multi-agent chemotherapy but died 46 d following diagnosis. Tumor staging and patient classification are needed to accurately establish a prognosis and select the most appropriate therapeutic protocol.


Sign in / Sign up

Export Citation Format

Share Document