scholarly journals Molecular cloning and in-silico characterization of high temperature stress responsive pAPX gene isolated from heat tolerant Indian wheat cv. Raj 3765

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Jasdeep Chatrath Padaria ◽  
Harinder Vishwakarma ◽  
Koushik Biswas ◽  
Rahul Singh Jasrotia ◽  
Gyanendra Pratap Singh
2016 ◽  
Vol 96 (3) ◽  
pp. 474-484 ◽  
Author(s):  
Yan-Qing Wu ◽  
Da-Qiu Zhao ◽  
Chen-Xia Han ◽  
Jun Tao

To clarify the theoretical basis of the differences in high temperature stress tolerance among herbaceous peony (Paeonia lactiflora Pall.), we investigated the heat injury index of twelve P. lactiflora cultivars. Of these, heat-tolerant ‘Zifengyu’ and moderately heat-tolerant ‘Hongyanzhenghui’ were selected to study the biochemical and molecular responses to high temperature stress. ‘Zifengyu’ had reduced malondialdehyde (MDA) content, increased soluble sugar, chlorophyll (Chl) a, Chl b, Chl a + b. and carotenoid contents, as well as elevated antioxidant enzymes activities, photosynthetic rate (Pn), transpiration rate (Tr) and relatively intact cellular structures compared with ‘Hongyanzhenghui’, especially when the temperature was the highest. Additionally, we isolated partial cDNAs of two heat shock protein genes (HSP60 and HSP90) from P. lactiflora, which were 880-bp and 1077-bp nucleotides in length, respectively. The expression levels of PlHSP60, PlHSP70 and PlHSP90 were lower in ‘Zifengyu’ than in ‘Hongyanzhenghui’ for the first three of four developmental stages examined. These results indicated that heat-tolerant P. lactiflora cultivar could effectively scavenge reactive oxygen species (ROS), protect cellular structures, reduce thermal damage and delay the death of plants by enhancing antioxidant enzymes activities and HSP expression under high temperature stress. These findings provide a theoretical basis for breeding heat-tolerant P. lactiflora cultivars.


Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2019 ◽  
Vol 66 (5) ◽  
pp. 880-899
Author(s):  
Bhagath Kumar Palaka ◽  
Anbumani Velmurugan Ilavarasi ◽  
Tuleshwori Devi Sapam ◽  
Kasi Viswanath Kotapati ◽  
Venkata Satyanarayana Nallala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document