scholarly journals Mitigation of biases in estimating hazard ratios under non-sensitive and non-specific observation of outcomes–applications to influenza vaccine effectiveness

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ulrike Baum ◽  
Sangita Kulathinal ◽  
Kari Auranen

Abstract Background Non-sensitive and non-specific observation of outcomes in time-to-event data affects event counts as well as the risk sets, thus, biasing the estimation of hazard ratios. We investigate how imperfect observation of incident events affects the estimation of vaccine effectiveness based on hazard ratios. Methods Imperfect time-to-event data contain two classes of events: a portion of the true events of interest; and false-positive events mistakenly recorded as events of interest. We develop an estimation method utilising a weighted partial likelihood and probabilistic deletion of false-positive events and assuming the sensitivity and the false-positive rate are known. The performance of the method is evaluated using simulated and Finnish register data. Results The novel method enables unbiased semiparametric estimation of hazard ratios from imperfect time-to-event data. False-positive rates that are small can be approximated to be zero without inducing bias. The method is robust to misspecification of the sensitivity as long as the ratio of the sensitivity in the vaccinated and the unvaccinated is specified correctly and the cumulative risk of the true event is small. Conclusions The weighted partial likelihood can be used to adjust for outcome measurement errors in the estimation of hazard ratios and effectiveness but requires specifying the sensitivity and the false-positive rate. In absence of exact information about these parameters, the method works as a tool for assessing the potential magnitude of bias given a range of likely parameter values.

2001 ◽  
Vol 1 (S3) ◽  
Author(s):  
Jayne Tierney ◽  
Larysa Rydzewska ◽  
Sarah Burdett ◽  
Lesley Stewart

2021 ◽  
Author(s):  
Theodore C Hirst ◽  
Emily S. Sena ◽  
Malcolm R. Macleod

Abstract Background: Time-to-event data is frequently reported in both clinical and preclinical research spheres. Systematic review and meta-analysis is a tool that can help to identify pitfalls in preclinical research conduct and reporting that can help to improve translational efficacy. However, pooling of studies using hazard ratios (HR) is cumbersome especially in preclinical meta-analyses including large numbers of small studies. Median survival is a much simpler metric although because of some limitations, which may not apply to preclinical data, it is generally not used in survival meta-analysis. We aimed to appraise its performance when compared with hazard ratio-based meta-analysis when pooling large numbers of small, imprecise studies.Methods: We simulated a survival dataset with features representative of a typical preclinical survival meta-analysis, including with influence of a treatment and a number of covariates. We calculated individual patient data-based hazard ratios and median survival ratios (MSR), comparing the summary statistics directly and their performance at Random-effects meta-analysis. Finally, we compared their sensitivity to detect associations between treatment and influential covariates at meta-regression.Results: There was in imperfect correlation between MSR and HR, although opposing direction of treatment effects between summary statistics appeared not to be a major issue. Precision was more conservative for HR than MSR, meaning that estimates of heterogeneity were lower. There was a slight sensitivity advantage for MSR at meta-analysis and meta-regression, although power was low in all circumstances.Conclusions: MSR appears to be a valid summary statistic for use in meta-analysis of small, imprecise experimental studies. It is computationally more straightforward and quicker to approximate than HR. While assessment of study precision and therefore weighting is less reliable, MSR appears to perform favourably during meta-analysis. Sensitivity of meta-regression was low for this set of parameters, so pooling of treatments to increase sample size may be required to ensure confidence in preclinical survival meta-regressions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Theodore C. Hirst ◽  
Emily S. Sena ◽  
Malcolm R. Macleod

Abstract Background Time-to-event data is frequently reported in both clinical and preclinical research spheres. Systematic review and meta-analysis is a tool that can help to identify pitfalls in preclinical research conduct and reporting that can help to improve translational efficacy. However, pooling of studies using hazard ratios (HRs) is cumbersome especially in preclinical meta-analyses including large numbers of small studies. Median survival is a much simpler metric although because of some limitations, which may not apply to preclinical data, it is generally not used in survival meta-analysis. We aimed to appraise its performance when compared with hazard ratio-based meta-analysis when pooling large numbers of small, imprecise studies. Methods We simulated a survival dataset with features representative of a typical preclinical survival meta-analysis, including with influence of a treatment and a number of covariates. We calculated individual patient data-based hazard ratios and median survival ratios (MSRs), comparing the summary statistics directly and their performance at random-effects meta-analysis. Finally, we compared their sensitivity to detect associations between treatment and influential covariates at meta-regression. Results There was an imperfect correlation between MSR and HR, although the opposing direction of treatment effects between summary statistics appeared not to be a major issue. Precision was more conservative for HR than MSR, meaning that estimates of heterogeneity were lower. There was a slight sensitivity advantage for MSR at meta-analysis and meta-regression, although power was low in all circumstances. Conclusions We believe we have validated MSR as a summary statistic for use in a meta-analysis of small, imprecise experimental survival studies—helping to increase confidence and efficiency in future reviews in this area. While assessment of study precision and therefore weighting is less reliable, MSR appears to perform favourably during meta-analysis. Sensitivity of meta-regression was low for this set of parameters, so pooling of treatments to increase sample size may be required to ensure confidence in preclinical survival meta-regressions.


Trials ◽  
2013 ◽  
Vol 14 (Suppl 1) ◽  
pp. O93
Author(s):  
Jayne Tierney ◽  
David Fisher ◽  
Sarah Burdett ◽  
Lesley Stewart ◽  
Mahesh Parmar

2002 ◽  
Vol 41 (01) ◽  
pp. 37-41 ◽  
Author(s):  
S. Shung-Shung ◽  
S. Yu-Chien ◽  
Y. Mei-Due ◽  
W. Hwei-Chung ◽  
A. Kao

Summary Aim: Even with careful observation, the overall false-positive rate of laparotomy remains 10-15% when acute appendicitis was suspected. Therefore, the clinical efficacy of Tc-99m HMPAO labeled leukocyte (TC-WBC) scan for the diagnosis of acute appendicitis in patients presenting with atypical clinical findings is assessed. Patients and Methods: Eighty patients presenting with acute abdominal pain and possible acute appendicitis but atypical findings were included in this study. After intravenous injection of TC-WBC, serial anterior abdominal/pelvic images at 30, 60, 120 and 240 min with 800k counts were obtained with a gamma camera. Any abnormal localization of radioactivity in the right lower quadrant of the abdomen, equal to or greater than bone marrow activity, was considered as a positive scan. Results: 36 out of 49 patients showing positive TC-WBC scans received appendectomy. They all proved to have positive pathological findings. Five positive TC-WBC were not related to acute appendicitis, because of other pathological lesions. Eight patients were not operated and clinical follow-up after one month revealed no acute abdominal condition. Three of 31 patients with negative TC-WBC scans received appendectomy. They also presented positive pathological findings. The remaining 28 patients did not receive operations and revealed no evidence of appendicitis after at least one month of follow-up. The overall sensitivity, specificity, accuracy, positive and negative predictive values for TC-WBC scan to diagnose acute appendicitis were 92, 78, 86, 82, and 90%, respectively. Conclusion: TC-WBC scan provides a rapid and highly accurate method for the diagnosis of acute appendicitis in patients with equivocal clinical examination. It proved useful in reducing the false-positive rate of laparotomy and shortens the time necessary for clinical observation.


1993 ◽  
Vol 32 (02) ◽  
pp. 175-179 ◽  
Author(s):  
B. Brambati ◽  
T. Chard ◽  
J. G. Grudzinskas ◽  
M. C. M. Macintosh

Abstract:The analysis of the clinical efficiency of a biochemical parameter in the prediction of chromosome anomalies is described, using a database of 475 cases including 30 abnormalities. A comparison was made of two different approaches to the statistical analysis: the use of Gaussian frequency distributions and likelihood ratios, and logistic regression. Both methods computed that for a 5% false-positive rate approximately 60% of anomalies are detected on the basis of maternal age and serum PAPP-A. The logistic regression analysis is appropriate where the outcome variable (chromosome anomaly) is binary and the detection rates refer to the original data only. The likelihood ratio method is used to predict the outcome in the general population. The latter method depends on the data or some transformation of the data fitting a known frequency distribution (Gaussian in this case). The precision of the predicted detection rates is limited by the small sample of abnormals (30 cases). Varying the means and standard deviations (to the limits of their 95% confidence intervals) of the fitted log Gaussian distributions resulted in a detection rate varying between 42% and 79% for a 5% false-positive rate. Thus, although the likelihood ratio method is potentially the better method in determining the usefulness of a test in the general population, larger numbers of abnormal cases are required to stabilise the means and standard deviations of the fitted log Gaussian distributions.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


Sign in / Sign up

Export Citation Format

Share Document