scholarly journals FUSE binding protein FUBP3 is a potent regulator in Japanese encephalitis virus infection

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Peng Xu ◽  
Wei Tong ◽  
Young-Mao Chen

Abstract Background The JEV genome is a positive-sense RNA with a highly structured capped 5′UTR, 3′UTR and a large open reading frame. 3′UTR is the untranslated region of flavivirus and has various important functions during viral replication, such as translation, replication and encapsidation. During viral replication, the 3′UTR interacts with viral proteins and host proteins and is required for viral RNA replication and translocation. Methods The expression level of FUBP3 was knocked down by siRNA and Flag-tagged FUBP3 overexpression plasmid was constructed for overexpression. BHK-21 cells were cultured and infected with JEV to investigate the functional role of FUBP3 in the viral infection cycle. Subcellular localization of FUBP3 and viral replication complexes was observed by dual immunofluorescence staining. Results Four host proteins were specifically associated with the 3′UTR of JEV, and FUBP3 was selected to further investigate its potential functional role in the JEV infection cycle. Knockdown of FUBP3 protein resulted in a significant decrease in JEV viral titer, whereas ectopic overexpression of FUBP3 resulted in increased JE viral infectivity. In cells stably knocked down for FUBP3 and then infected with JEV, we found almost no detectable viral NS5 protein. In contrast, when cells stably knocking-down of FUBP3 overexpressed FUBP3, we found a significant increase in viral RNA production over time compared to controls. We also demonstrated that FUBP3 re-localized in the cytoplasm after infection with JEV and co-localized with viral proteins. Exogenous overexpression of FUBP3 was also shown to be located in the JE replication complex and to assist viral replication after JEV infection. Conclusions The overall results suggest that FUBP3 regulates RNA replication of JEV and promotes subsequent viral translation and viral particle production.

mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Emily E. Ackerman ◽  
Eiryo Kawakami ◽  
Manami Katoh ◽  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
...  

ABSTRACTThe positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins—more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCEIntegrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


2018 ◽  
Author(s):  
Josep Sardanyés ◽  
Andreu Arderiu ◽  
Santiago F. Elena ◽  
Tomás Alarcón

Evolutionary and dynamical investigations on real viral populations indicate that RNA replication can range between two extremes given by so-called stamping machine replication (SMR) and geometric replication (GR). The impact of asymmetries in replication for single-stranded, (+) sense RNA viruses has been up to now studied with deterministic models. However, viral replication should be better described by including stochasticity, since the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasineutral coexistence scenario, with a line of fixed points involving different strands’ equilibrium ratios depending on the initial conditions. Recent research on the quasineutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alters the mean-field scenario, and one of the two species outcompetes the other one. In this manuscript we study this phenomenon for RNA viral replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNA, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication.


2004 ◽  
Vol 78 (22) ◽  
pp. 12480-12488 ◽  
Author(s):  
Mark Trottier ◽  
Brian P. Schlitt ◽  
Aisha Y. Kung ◽  
Howard L. Lipton

ABSTRACT The dynamics of Theiler's murine encephalomyelitis virus (TMEV) RNA replication in the central nervous systems of susceptible and resistant strains of mice were examined by quantitative real-time reverse transcription-PCR and were found to correlate with host immune responses. During the acute phase of infection in both susceptible and resistant mice, levels of viral replication were high in the brain and brain stem, while levels of viral genome equivalents were 10- to 100-fold lower in the spinal cord. In the brain, viral RNA replication decreased after a peak at 5 days postinfection (p.i.), in parallel with the appearance of virus-specific antibody responses; however, by 15 days p.i., viral RNA levels began to increase in the spinal cords of susceptible mice. During the transition to and the persistent phase of infection, the numbers of viral genome equivalents in the spinal cord varied substantially for individual mice, but high levels were consistently associated with high levels of proinflammatory Th1 cytokine and chemokine mRNAs. Moreover, a large number of viral genome equivalents and high proinflammatory cytokine mRNA levels in spinal cords were only observed for susceptible SJL/J mice who developed demyelinating disease. These results suggest that TMEV persistence requires active viral replication beginning about day 11 p.i. and that active viral replication with high viral genome loads leads to increased levels of Th1 cytokines that drive disease progression in infected mice.


2003 ◽  
Vol 23 (12) ◽  
pp. 4094-4106 ◽  
Author(s):  
Amine O. Noueiry ◽  
Juana Diez ◽  
Shaun P. Falk ◽  
Jianbo Chen ◽  
Paul Ahlquist

ABSTRACT Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5′ and 3′ noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation.


1998 ◽  
Vol 72 (7) ◽  
pp. 5845-5851 ◽  
Author(s):  
Sara K. Oster ◽  
Baodong Wu ◽  
K. Andrew White

ABSTRACT Tomato bushy stunt virus (TBSV) is a plus-sense RNA virus which encodes a 33-kDa protein in its 5′-most open reading frame (ORF). Readthrough of the amber stop codon of the p33 ORF results in the production of a 92-kDa fusion protein. Both of these products are expressed directly from the viral genome and are suspected to be involved in viral RNA replication. We have investigated further the roles of these proteins in the amplification of viral RNAs by using a complementation system in which p33 and p92 are expressed from different viral RNAs. Our results indicate that (i) both of these proteins are necessary for viral RNA amplification; (ii) translation of these proteins can be uncoupled while maintaining amplification of viral RNAs; (iii) if compatibility requirements exist between p33 and p92, they are not exceptionally strict; and (iv) the C-terminal ∼6% of p33 is necessary for its functional activity. Interestingly, no complementation was observed when a p33-encoding replicon containing a deletion of a 3′-located segment, region 3.5, was tested. However, when 5′-capped transcripts of the same replicon were analyzed, complementation allowing for RNA amplification was observed. This ability to compensate functionally for the absence of region 3.5 by the addition of a 5′ cap suggests that this RNA segment may act as a translational enhancer for the expression of virally encoded products.


Author(s):  
Feroza Begum ◽  
Debica Mukherjee ◽  
Sandeepan Das ◽  
Dluya Thagriki ◽  
Prem Prakash Tripathi ◽  
...  

1.AbstractThe open reading frame (ORF) 1ab of SARS-CoV2 encodes non-structural proteins involved in viral RNA functions like translation and replication including nsp1-4; 3C like proteinase; nsp6-10; RNA dependent RNA polymerase (RdRp); helicase and 3’-5’ exonuclease. Sequence analyses of ORF1ab unravelled emergence of mutations especially in the viral RdRp and helicase at specific positions, both of which are important in mediating viral RNA replication. Since proteins are dynamic in nature and their functions are governed by the molecular motions, we performed normal mode analyses of the SARS-CoV2 wild type and mutant RdRp and helicases to understand the effect of mutations on their structure, conformation, dynamics and thus function. Structural analyses revealed that mutation of RdRp (at position 4715 in the context of the polyprotein/ at position 323 of RdRp) leads to rigidification of structure and that mutation in the helicase (at position 5828 of polyprotein/ position 504) leads to destabilization increasing the flexibility of the protein structure. Such structural modifications and protein dynamics alterations might alter unwinding of complex RNA stem loop structures, the affinity/ avidity of polymerase RNA interactions and in turn the viral RNA replication. The mutation analyses of proteins of the SARS-CoV2 RNA replication complex would help targeting RdRp better for therapeutic intervention.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Nicolas Lévêque ◽  
Magali Garcia ◽  
Alexis Bouin ◽  
Joseph H. C. Nguyen ◽  
Genevieve P. Tran ◽  
...  

ABSTRACT Group B coxsackieviruses are responsible for chronic cardiac infections. However, the molecular mechanisms by which the virus can persist in the human heart long after the signs of acute myocarditis have abated are still not completely understood. Recently, coxsackievirus B3 strains with 5′-terminal deletions in genomic RNAs were isolated from a patient suffering from idiopathic dilated cardiomyopathy, suggesting that such mutant viruses may be the forms responsible for persistent infection. These deletions lacked portions of 5′ stem-loop I, which is an RNA secondary structure required for viral RNA replication. In this study, we assessed the consequences of the genomic deletions observed in vivo for coxsackievirus B3 biology. Using cell extracts from HeLa cells, as well as transfection of luciferase replicons in two types of cardiomyocytes, we demonstrated that coxsackievirus RNAs harboring 5′ deletions ranging from 7 to 49 nucleotides in length can be translated nearly as efficiently as those of wild-type virus. However, these 5′ deletions greatly reduced the synthesis of viral RNA in vitro, which was detected only for the 7- and 21-nucleotide deletions. Since 5′ stem-loop I RNA forms a ribonucleoprotein complex with cellular and viral proteins involved in viral RNA replication, we investigated the binding of the host cell protein PCBP2, as well as viral protein 3CDpro, to deleted positive-strand RNAs corresponding to the 5′ end. We found that binding of these proteins was conserved but that ribonucleoprotein complex formation required higher PCBP2 and 3CDpro concentrations, depending on the size of the deletion. Overall, this study confirmed the characteristics of persistent CVB3 infection observed in heart tissues and provided a possible explanation for the low level of RNA replication observed for the 5′-deleted viral genomes—a less stable ribonucleoprotein complex formed with proteins involved in viral RNA replication. IMPORTANCE Dilated cardiomyopathy is the most common indication for heart transplantation worldwide, and coxsackie B viruses are detected in about one-third of idiopathic dilated cardiomyopathies. Terminal deletions at the 5′ end of the viral genome involving an RNA secondary structure required for RNA replication have been recently reported as a possible mechanism of virus persistence in the human heart. These mutations are likely to disrupt the correct folding of an RNA secondary structure required for viral RNA replication. In this report, we demonstrate that transfected RNAs harboring 5′-terminal sequence deletions are able to direct the synthesis of viral proteins, but not genomic RNAs, in human and murine cardiomyocytes. Moreover, we show that the binding of cellular and viral replication factors to viral RNA is conserved despite genomic deletions but that the impaired RNA synthesis associated with terminally deleted viruses could be due to destabilization of the ribonucleoprotein complexes formed.


Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 104 ◽  
Author(s):  
Alexandra Meyer ◽  
Marie Freier ◽  
Tobias Schmidt ◽  
Katja Rostowski ◽  
Juliane Zwoch ◽  
...  

The 3′-terminal stem-loop (3′SL) of the RNA genome of the flavivirus West Nile (WNV) harbors, in its stem, one of the sequence elements that are required for genome cyclization. As cyclization is a prerequisite for the initiation of viral replication, the 3′SL was proposed to act as a replication silencer. The lower part of the 3′SL is metastable and confers a structural flexibility that may regulate the switch from the linear to the circular conformation of the viral RNA. In the human system, we previously demonstrated that a cellular RNA-binding protein, AUF1 p45, destabilizes the 3′SL, exposes the cyclization sequence, and thus promotes flaviviral genome cyclization and RNA replication. By investigating mutant RNAs with increased 3′SL stabilities, we showed the specific conformation of the metastable element to be a critical determinant of the helix-destabilizing RNA chaperone activity of AUF1 p45 and of the precision and efficiency of the AUF1 p45-supported initiation of RNA replication. Studies of stability-increasing mutant WNV replicons in human and mosquito cells revealed that the cultivation temperature considerably affected the replication efficiencies of the viral RNA variants and demonstrated the silencing effect of the 3′SL to be temperature dependent. Furthermore, we identified and characterized mosquito proteins displaying similar activities as AUF1 p45. However, as the RNA remodeling activities of the mosquito proteins were found to be considerably lower than those of the human protein, a potential cell protein-mediated destabilization of the 3′SL was suggested to be less efficient in mosquito cells. In summary, our data support a model in which the 3′SL acts as an RNA thermometer that modulates flavivirus replication during host switching.


2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Dzwokai Ma ◽  
Cyril X. George ◽  
Jason L. Nomburg ◽  
Christian K. Pfaller ◽  
Roberto Cattaneo ◽  
...  

ABSTRACTReplication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCEMeasles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.


Sign in / Sign up

Export Citation Format

Share Document