A nationwide survey of the tabanid fauna of Cameroon
Abstract Background Tabanids are a neglected group of haematophagous dipterans despite containing 4434 species, regrouped in > 144 genera. They are mechanical vectors of important pathogens, including viruses, bacteria and protozoa of humans and domesticated and wild animals. As it is > 50 years since the publication of a preliminary nationwide record of the tabanids of Cameroon identified 84 species, updated information is needed. The aim of this study was to provide current data on the species composition, abundance and distribution of tabanids in the five main agro-ecological zones (AEZs) of Cameroon. Methods From 2015 to 2017, a systematic entomological study using Nzi, Vavoua, Biconical and Sevi traps (n = 106) was conducted in 604 trapping points over 11,448 trap-days in the five main AEZs of Cameroon. Results A total of 25,280 tabanids belonging to 25 species were collected, including eight species not previously documented in Cameroon, namely Tabanus latipes (1 female), Tabanus ricardae (1 female), Tabanus fasciatus (32 females and 6 males), Haematopota pluvialis (18 females), Haematopota decora (19 females and 3 males), Haematopota nigripennis (18 females), Chrysops distinctipennis (47 females and 5 males) and Ancala fasciata (34 females and 7 males). The distribution maps of the newly identified tabanids differed between AEZs, with most tabanids collected from the Guinean savanna. The highest apparent density of tabanids was recorded in the Sudan Savanna region, and the mean apparent densities of species with sites was statistically significantly different (Student t-test: 2.519, df = 24, P = 0.019). The highest species diversity was found in the rainforest. Conclusions This study increased the list of tabanids recorded in Cameroon from 84 species in the preliminary record to 92 species, with most of the newly identified species occurring in the Guinea Savanna AEZ. The high diversity and abundance of tabanids in the livestock/wildlife interface areas of the rain forests and Sudan Savanna AEZs, respectively, suggest risk of mechanical transmission of pathogens. Investigations of the microbiota of tabanids in the different AEZs to define their role as disease vectors are proposed. Graphical abstract